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Welcome to the R6500 Microcomputer System user family. This Programming
Manual {is designed teo work in conjunction with the R6500 System Hardware
Manual, which describes the basie hardware considerations when using the
Rockwell International microcomputer family.

Before reading this Programming Manual, it is suggested that the reader
acquaint himself with the Hardware Manual in order to understand the compo-
nents available in the R6500 system and how these components are interconnected
to form the R6500 system. This Programming Manual develops the concepts of
microprocessor (CPU) internal architecture and how it is used, with attention
given to input/output considerations. Familiarity with the hardware will
facilitate easier understanding of these important concepts.

In order to best serve the total customer base, this manual is written in
two levels. The first is a very basic introduction to the R6500 system, and
the second level is for the user who has to refer to the manual on more than
an occasional basis and who wants to rapidly scan and find specific sections.
For the user who is quite familiar with programming and the R6500 instruction
set, the appendices are the best references in the sense that they summarize,
in a series of tables for convenience, all of the data which are discussed in

detail in the manual.

It is recommended that even the user who is an experienced programmer and
familiar with microprocessors still take the time to read through the manual
in detail. Some of the architectural concepts are different from those found
in second-generation machines, and this manual instructs the user how to opti-
nize the utilization of the microprocessor, while providing an introduction of

its basic concepts.




Criticism of this manual is welcomed at all times. Of particular
interest are cases where the user was unable, by use of the index and appen-—
dix, to rapidly find the answer to a question developed in the course of
designing a microprocessor system. Welcomed also are any comments which will

enhance the content and format of the manual in future editions or addenda.

1.1 MICROPROCESSOR ARCHITECTURE

The R6502 through R6507 and R6512 through R6515 are all 8-bit micro-
processors. That means that 8 bits of data are transferred or operated upon
during each instruction cycle or operation cycle.

All devices in the R6500 family operate on data 8-bits-at-a-time, al-
though some of the operations will appear to be serial or 16-bit-wide oper—
ations. A later section of this manual discusses the use of sequential oper-
ations on an 8-bit basis and how one can accomplish 16-bit effective operands
and addressing.

For some time, the computer industry has been designating 8-bit combina-
tions of data by a term known as a "byte." 1In many Jarge comnufers which
operate simultaneously on multiple bytes of data, the number of bytes which
are transferred and operated on by the machine in parallel are called a
“word." Because the R6500 Microcomputer System's microprocessors are 8-bit
microprocessors, the words and bytes are of equal length. Therefore, for

convenience through the discussion of the basic 8-bit processors, "byte" and

"word" will be used synonymously.

CHAPTER 2

THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 THE DATA BUS

Although most of the following discussion will consider how one
operates with a general-purpose register called the accumulator, it must
be understood that data has to transfer between the accumulator and out-
side sources by means of passing through the microprocessor to 8 lines
called the data bus. The outside sources include the program which con-
trols the microprocessor, the memory which will be used as interim stor-
age for internal registers when they are to be used in a current opera-
tion, and the actual communications to the world through input/output (1/0)
ports. Later in this document performance of transfers to and from each
of these devices will be discussed. However, at present, discussion

will center on the microprocessor itself.

[ DATA BUS (8-BIT PARALLEL) l
ACCUMULATOR MEMORY
A M

Partial Block Diagram of a R6500 Microcomputer System Microprocessor

FIGURE 2.1

The only operation of the data bus is to transfer data between mem-—
ory and the processor's internal registers such as the accumulator. Fig-
ure 2.1 disolays the basic communication between the accumulator, A, and
the memory, M, through the use of eight bidirectional data lines called

the "data bus."
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2.1 THE ACCUMULATOR

The accumulator is a register in which data are kept on which opera-
tions are performed. All operations between memory locations must be
cdmmunicated through thé accumulator or one of the auxiliary index reg-
jsters. The accumulator is used as a temporary storage in moving data
from one memory location to another. Therefore, the first use for the
accumulator (A) is simply in the transfer of data from memory to the accu-
mulator or from the accumulator ko memory. One can bring data info rhe
accumulator, perform operations such as AND/OR on the data, test the re-
sults of those operations, set new bits in the accumulator, or transfer the
data back out to the outside world.

The accumulator serves as an interim storage for a series of oper-
ations such as adding two values rogether, with one of the values being
joaded into the accumulator, the second added to it, and the results stored
in the accumulator. The accumulator really serves two functions: 1) It is
one of the primary storage points for the machine, and 2) it is the point

at which intermediate results are normally stored.

2.1.1 LDA -- Load Accumulator with Memory

When instruction LDA is executed by the microprocessor, data
are transferred from memory to the accumulator and stored in the
accumulator.

Rather than continuing to give a word picture of the opera-
tion, introduced will be the symbolic representation M — A, where
the arrow means 'transfer to." Therefore, the LDA instruction sym-
bolic representation is read "memory transferred to the accumulator.

LDA affects the contents of the accumulator, does not affect
the carry or overflow flags; sets the zero flag if the accumulator is
zero as a result of the LDA, otherwise resets the zero flag; sets the
negative flag if bit 7 of the accumulator is a l, otherwise resets the
negative flag.

Although yet to be developed is the concept of addressing
modes, for reference purposes LDA is a "Group One" instruction and has

all of the major addressing modes of the machine available to it as

T

TR

stated in Appendix A. These addressing modes include Immediate;
Absolute; Zero Page; Absolute, X; Absolute, Y; Zero Page, X; Indexed

Indirect; and Indirect Indexed.

2.1.2 STA -- Store Accumulator in Memory

This instruction transfers the contents of the accumulator
to memory.

The symbolic representation for this instruction is A -+ M.

This instruction affects none of the flags in the processor
status register and does not affect the accumulator.

It is a "Group One" instruction and has the following address-
ing modes available to it: Absolute: Zero Page; Absolute, X: Abso-

lute, Y; Zero Page, X; Indexed Indirect; and Indirect Indexed.
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2.2 THE ARITHMETIC UNIT

One of the functions to be expected from any computer is the ability
to compute or perform arithmetic operations. Even in a simple control
problem, one often finds it useful to add two numbers in order to determine
‘that a value has been reached, or to subtract two numbers in order to calcu-
late a new value which nust be obtained. 1In addition, many problems involve
some rudimentary form of decimal or binary arithmetic; certainly, many appli-
cations will involve both. The R6500 has an 8-bit arithmetic unit which

interfaces to the accumulator as shown in Figure 2.2.

[ DATA BUS

{ ¢ $

ARITHMETIC

]

LOGIC : : ACCUMULATOR MEMORY
UNIT A M
ALU

Partial Block Diagram Including Arithmetic Logic Unit of a R6500 Computer System Microprocessor
FIGURE 2.2

The arithmetic unit is composed of several major parts. The most
important of these is the circuitry necessary to perform a two's comple-
ment add of 8-bit parallel values and to generate an 8-parallel-bit tinary
result plus a carr§. A review of binary and binary-coded decimal (BCD)
arithmetic is presented in Appendix . However, a quick review of the
concept of "carry'" is in order. The largest range that can be repre-
sented in an 8-bit number is 256, with values ranging between 0 and 255.
If we add any two numbers which result in a sum which is greater than 255,
we represent the result with a ninth bit plus the 8 bits of the excess
The ninth bit is called

over 255. “carry."
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2.2.1 ADC -- Add Memory to Accumulator with Carry

This instruction adds the value of memory and carry from the
previous operation to the value of the accumulator and stores the
result in the accumulator.

The symbolic representation for this instruction is
A+M+C—A.

This instruction affects the accumulator. It sets the carry
flag when the sum of a binary add exceeds 255 or when the sum of a
decimal add exceeds 99; otherwise carry is reset. The overflow flag
is set when the sign or bit 7 is changed due to the result exceeding
+127 or -128; otherwise overflow is reset. The negative flag is set
if the accumulator result contains bit 7 on: otherwise the negative
flag is reset. The zero flag is set if the accumulator result is 0;
otherwise the zero flag is reset.

It 1s a "Group One" instruction and has the following address-
ing modes: Immediate; Absolute; Zero Page: Absolute, X; Absolute, Y:

Zero Page, X; Indexed Indirect; and Indirect Indexed. -

The ninth bit of the result is stored in the carry flag and
the remaining 8 bits reside in the accumulator. The carry flag can
be thought of as a flag bit which is remote from the accumulator it-
self, but which is directly affected by accumulator operations as
though it were a ninth bit in the accumulator. The primary reason
for not viewing the carry bit as merely a ninth bit in the accumu-
lator is that one has program control over its state by being able
to set (to "1") or clear (to "0") the bit and, of course, it is not
part of the 8-bit accumulator in data transfer operations. Examples

employing the Add with Carry operation follow.

Example 2.1: Add 2 Numbers with Carry; No Carry Generation
0000 1101 13 = (A)*
1101 0011 211 = (M)*
—_ 1 1 = CARRY
Carry = ZU/ 1110 0001 225 = (A)

*(A) and (M) refer to the 'contents" of the accumulator and
"contents" of memory respectively.
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Example 2.3: Adding Two 16-Bit Numbers
High-Order-Byte Low-Order Byte
Example 2.2: Add 2 Numbers with Carry; Carry Generation First Number Hl L1
Second Number H2 L2
1111 1110 254 = (A) Result of Addition H3 L3
0000 o110 6 = (1) LDA L1 Load low-order byte, first number
1 1 = CARRY
Carry = {1; 0000 0101 5 = (A) CLC Clear carry flag (carry = 0)
ADC L2 Add L1 to low-order byte, second num-
b
While the accumulator contains "s," the carry flag signals er
STA L3 Store result in memory, carry flag is

the user that the result exceeded 255 and, therefore, the result can still set if set in ADC operation

be properly interpreted as 256 + 5 = 261. LDA H1l Load high-order byte, first number
ADC H2 Add Hl and carry value from first ADC
2.2.1.1 Multiple-Precision Addition operation to high-order byte, second
number
To perform the addition of two numbers, one issues to the STA H3 Store result in memory

microprocessor an ADC instruction which adds the memory and the accu-
In this example it was necessary to cl the carry fl
mulator, and stores the results in the accumulator with the carry bit P y te ear e carry ag
before starting the add instruction. This, of course, means that
being set if the results exceed 255.
commands exist that set and cl th fl 1 f ddi-
To add numbers with significantly higher value than 255, it nes exis at set and clear the carry flag allowing for a
tion without values generated from the prior operation. One could
would be necessary to represent these numbers by a series of serial
also, at the end of the progra heck to see if the result exceeded
8—bit numbers. With the 16 bits in two serial 8-bit numbers, it is ’ nd o program, © o se e result exceede
16 bits by testing the carry flag. Exactly how one alters and tests
possible to represent binary numbers of greater than 65,000 in value.
) . flags will be discussed in the Flag and Branches Sections. The
In order to add two 16-bit numbers together and thus accomplish double-
. 3 examples below display the concept of carry from the addition of the
precision addition, one first loads the lowest byte of one number into

low order bytes.
the accumulator, clears the carry flag and then adds the second number

to the first number in the accumulator using the ADC command. One ‘ Example 2.4: Add Two 16-Bit Numbers, No Carry from Low-
Order Add

then stores this result into another memory location using the STA

command. The carry flag now represents the carry from the lowest byte 0000 0001 0000 0010 258
0001 0000 0001 0000 4112
to the highest byte. One can then load the high-order byte of the
Add low-order bytes: (clear carry)

first number, add with carry again to the high value of the second num-
0000 0010 (A)

ber, and store the result in the high-order byte of the result. Thus, 4 0001 0000 (M)
it can be seen that the carry allows us to perform as much precision ] Carry = /0/ 0001 0010 (A)
arithmetic as is necessary. The example listing below displays the i Add high-order bytes (carry = 0):
commands used to execute the addition of two l6-bit numbers. : 0000 0001 (A)
R 0001 0000 (M)
L 0 CARRY

Carry = /0/ 0001 0001 (A)
Result = 0001 0001 0001 0010 = 4370




Example 2.5: Add Two 16-Bit Numbers, with Carry from Low-
Order Add

¢ 0000 0001 1000 0000 384
0000 0000 1000 0000 128

Add low-order bytes: (clear carry)

1000 0000 (A)
. 1000 0000 (M)
Carry = /1, 0000 0000 (A)

Add high-order bytes: (carry = 1)

0000 0001 (&)
0000 0000 (M)
_ 1 CARRY
Carry = /0/ 0000 0010 (A)

Result = 0000 0010 0000 0000 = 512

2.2.1.2 Signed Arithmetic

It is possible to look at the add operation and the way
data are represented in memory in a different way. If, in the 16-bit
problem (Examples 2.4 and 2.5), one were working with 15 bits of pre-
cision (in other words, 15 bits of valid data) plus ! bit of sign (0
for positive and 1 for negative), it would be possible to perform
signed binary arithmotic without changing the adder, but by merely
changing the way the results are interpreted. In order to fac{litate
this concept, the microprocessor has the ability to represent positive
or negative numbers by means of a negative flag which will be discussed
length in Section 3.7. In the R6500 microprocessor family, bit 7 is
the sign position bit. This means that the highest-order byte in a
series of bytes should have the sign in the eighth position. 1f, for

simplicity, one talks about signed 8-bit numbers. it would. mean that

one was allowed only 128 combinations of each sign because that is the ¥

most that can be represented in 7 bits, with the eighth bit or the

highest bit reserved for the sign position.

« BIT POSITION

' 1" = NEGATIVE
SIGN POSITION

0" = POSITIVE

Byte Orientation with Sign Position
FIGURE 2.3

In the following examples of signed arithmeric it should ope
noted that nperations are nccurring on a 7-bit field of numbers and
that any carry generated ouf of that field wi)l reside in the eighrh
bit -- not in the carry flag discussed during the add operations. The
generation of a carry out of the field is the same as when adding two
8-bit numbers, except for the fact that the normal carry fla,; does not
correctly represent the fact that the field has been excecds!. This is
because the true carry from adding the two 7-bit nunt2rs resides in the
sign bit position. Therefore, the carry flag has no i1cal meaning. In-
stead, there is a separate flag, the overflow flag, which is used to
indicate when a carry from 7 bits has occurred and allows the user to
write correction programs.

In each example, the negative numbers are in two's complement
form. Also included in each result will be the status of the carry
and overflow flags. The overflow flag is set whenever the sign bit

(bit 7) is changed as a result of the operation.

Example 2.6: Add Two Positive Numbers with No Overflow

0000 o101 45 (a)
0000 o111 +7 ()
carry = [6] 0000 1100 +12 (&)

Overflow = [:7 "0" {n bit 7 indicates positive result.
Note that both the carry and overflow
flag remain cleared.




—

Example 2.11: Add Two Negative Numbers with Overflow

1011 1110 -66 (A)
. . 1011 1111 -65 (M)
: th O fl IS T N . 14
Example 2.7: Add Two Positive Numbers wi h Overflow Carry = /I] 0111 1101 "IT25" (A)
oLl 1111 +127  (A) Overflow = LI— "0" indicates positive result, but the
¢ - 0009 0010 + 2 (M) overflow flag is set indicating that the

Carry = /O0/ 1000 0001 '"-127" (A) allowable range was exceeded in the opera-
Overflow = ZI? "1 in bit 7 indicates negative result and tion. Without the overflow indication, the

result would be interpreted as +125. The
overflow, however, indicated that the result
was negative and exceeded the value -128.
Hence the user is flagged of an incorrect
result, indicating the need for a correc-
tion routine.

the two's complement of the result is 127;
however, the overflow flag is set indicat-
ing the allowable range was exceeded in the
addition.

Therefore, examination of the overflow indicated that the result was

in fact not negative but that the bit 7 position represented an over- 2.2.1.3 Decimal Addition

f 127. H th ser is flagged of an incor

flow beyond the value of 1 ence the use 88 There is a way for the user to organize data for decimal

t follow.

rect result and a correction routine (program) mus obte operations. The R6500 System's microprocessors have a modified

Example 2.8: Add Positive and Negative Number with Posi-
tive Result

adder which allows the user to represent his numbers as two 4-bit

binary coded decimal (BCD) numbers packed into a single byte. This

0000 0101  +5 (M
. 11t1 1101 -3 ™) is a unique feature of the R6500 microprocessor family in that the
Carry = /1/ 0000 0010 +2 (A) operation in the following example can be performed.
Overflow = o/ “g" in bit 7 indicates positive result.

Example 2.12: Decimal Addition

(Recall that though the carry flag is set,
it has no meaning in signed operations.)

CLC Clear Carry Flag
SED Set Decimal Mode

Example 2.9: Add Positive and Negative Number with Nepative LDA Ol1l 1001 79

Result ADC 0001 0100 +14
0000 0101 +5 (A) STA 1001 0011 93
1111 1001 -7 an
Carry = /O/ 1111 1110 -2 (A) The microprocessor adder has the unique capability of per-
Overflow = Z:7 "1" in bit 7 indicates negative result. forming real time correction to the normal eapected binary result

Example 2.10: Add Two Negative Numbers without Overflow without any direct interference from the programmer. Other popular

microprocessors require a separate instruction (Decimal Adjust)

1111 1011 -5 r)
_ 1ill 1001 _ -7 (M which corrects the direct binary result of the arithmetic unit to
Carry = /1/ __1111 o1eo -12 ) obtain the same final results as are available on this microprocessor
Overflow = /0/ “1" in bit 7 indicates negative result. directly.
In order to make the same arithmetic unit perform either as
a binary adder or as a decimal adder, the user chooses the mode in
which he is going to operate (either decimal or binary) by setting
2-10 2-11




another flip-flop in the microprocessor called the “decimal flag". As
shown in this example, one mnot only initializes the adder by clearing
the carry ‘flag, but also puts the processor into decimal mode with
tHe SED instruction. Even though this also requires one instruction,
it is possible to put the machine in decimal mode once and perform
many long strings of decimal numbers without further user interven-—
tion. The "Decimal Adjust" feature on other microprocessors requires
programming subsequent to each binary operation. The CLD instruction

returns the arithmetic unit to the binary adder mode.

2.2.1.4 Add Summary

' In summary, the basic arithmetic unit is a binary adder

which, under control of the ADC command, performs binary arithmetic
on the accumulator and data, storing the result in the accumulator.
Depending on the way the user looks at the data which are presented
to the adder and the results which are obtained, the user can deter-
mine whether or not the result exceeds 255 binary or 99 decimal; he
can perform precision arithmetic by use of the ninth bit or carry
flag; he can control whether or not the microprocessor is a decimal
adder by setting the decimal mode; and he can represent his numbers
as signed binary numbers by analyzing other flags that are set-in the

machine.

2.2.2 SBC Subtract Memory from Accumulator with Borrow

This instruction subtracts the value of memory and borrow from
the value of the accumulator, using two's complement arithmetic, and
stores the result in the accumulator. Borrow is defined as the carry
flag complemented; therefore, a resultant carry flag indicates that a
borrow has not occurred.

The symbolic representation for this instruction is
A-M~-C»A.

This instruction affects the accumulator. The carry flag is
set if the result is greater than or equal to 0. The carry flag 1is
reset when the result is less than 0, indicating a borrow. The over-

flow flag is set when the result exceeds +127 or -128; otherwise, it

2~-12

is reset. The negative flag is set if the result in the accumulator
has bit 7 on, otherwise it is reset. The Z flag is set if the result
in the accumulator is 0; otherwise, it is reset.

It is a "Group One" instruction. It has addressing modes
Immediate; Absolute; Zero Page; Absolute, X; Absolute, Y; Zero Page, X;
Indexed Indirect; and Indirect Indexed.

In a binary machine, the classical way to perform arithmetic
is by using two's complement notation. In using two's complement
notation, any subtraction operation becomes a sequence of bit comple-
mentations and additions. This reduces the complexity of the circuits
required to perform a subtraction.

When the SBC instruction is employed in single-precision subtrac-
tion, there will normally be no borrow; therefore, the programmer
must set the carry flag, by using the SEC (Set carry to 1) instruc- |
tion, before using the SBC {nstruction. The microprocessor adds the
carry flag to the complemented memory data, resulting in a true two's

complement form of the memory value with its sign inverted.

Example 2.13: Subtract Two Numbers with Borrow; Positive Result

Assume a single precision subtraction where A contains 5 and M con-
tains 3. The carry flag must be set to a 1 using the SEC instruc-

tion, thereby representing the no-borrow condition.

The adder changes the sign of M by taking the two's complement
of M. This involves complementing M and adding the carry bit.
M=3 0000 0011
Complemented M 1111 1100
1

Add C =1
-M = -3 1111 1101

The adder adds A and the two's complement -M together. This
operation occurs simultaneously with the complement operation.

A=5 0000 0101
Add -M = -3 1111 1101

Carry = /1/ 0000 0010 = +2

The presence of the carry flag after this operation indicates

that No Borrow was required, therefore the result is +2.
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Example 2.14: Subtract Two Numbers with Borrow; Negative Result

Assume a single-precision subtraction where A contains 5 and M con-

tains 6. Set the carry flag to a 1 with SEC to indicate No Borrow.

M= 6 0000 0110
Compleménted M 1111 1001
Add C = 1 1

-M = -6 1111 1010

A=5 0000 0101
Add -M = -6 1111 1010
Carry = /0/ 1111 1111 = -1
The absence of the carry flag after this operation indicates
that a borrow was required, therefore the result is a -1 in two's
complement form. The absolute (unsigned) result in straight binary

could be obtained by taking the two's complement of this number.

2.2.2.1 Multiple-Precision Subtraction

Double-precision subtraction is implemented in a fashion
similar to addition. An example for subtracting a 16-bit number and

storing the result follows:

t Example 2.15: Subtracting Two 16-Bit Numbers

High-Order Byte Low-Order Byte

First Number H1 L1

Second Number H2 L2

Result of Subtraction H3 L3

SEC Set Carry

LDA Ll Load-Low Order Byte, First Number

SBC L2 Subtract with Borrow, Low-Order Byte'of Second
Number from L1

STA L3 Store Result in Memory

LDA H1 Load High-Order Byte, First Number

SBC H2 Subtract with Borrow, High-Order Byte of Second
Number from Hl1

STA H3 Store Result in Memory

Example 2.16: Subtract in Double-Precision Format; Positive
Result

Assume a double-precision subtraction where 255 is to be
subtracted from 512 for an example. Since there has been no borrow
coming into this subtraction operation, the carry flag must be set.

Following are che 2 numbers in binary form:

High-Order Byte Low-Order Byte

A field = 512 0000 0010 0000 0000
M field = 255 0000 0000 1111 1111

Since the adder can only operate on single byte numbers, the
programmer must operate on the low-order bytes first.
M = 1111 1111
Complemented M = 0000 0000

Add C =1 1
-M 0000 0001

A = 0000 0000
Add -M = 0000 0001
Carry = /0/ 0000 0001

The carry is brought over to the subtract operation on the

high-order bytes.

M = 0000 0000
Complemented M = 1111 1111
Add C =0 0

-M 1111 1111

A = 0000 0010
Add -M = 1111 1111
Carry = /1/ 0000 0001

The result in binary form follows:
Carry = /1/ 0000 0001 0000 0001 = +257

The presence of the carry flag after the highest-order byte
subtraction indicates that the entire number required No Borrow,

therefore it is a positive number in straight binary form.
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Example 2.17: Subtract in Double Precision Format; Negative
Result

Now assume a double-precision subtraction where 512 is to be
subtracted from 255. Again, since there has been no borrow coming
into this subtraction operation, the carry flag must be set.

Following are the two numbers in binary form:

High-Order Byte Low-Order Byte

A field = 255 0000 0000 1111 1111
M field = 512 0000 0010 0000 0000

Operating on the low-order byte:
M = 0000 0000
M= 1111 1111

Add C = 1 1
Carry = /1/ 0000 0000 = -M
A = 1111 1111

Add -M = /1 0000 0000
Carry = /1/ 1111 1111

The presence of the carry = 1 indicates no borrow.
The carry is now brought over to the high-order byte sub-

tract operation:

M = 0000 0010

M = 1111 1101

Add C =1 1
1111 1110

A =0000 0000
M+ C=1111 1110

Carry = /0/ 1111 1110

The result in binary form is:
Carry = /07 1111 1110 1111 111l = -257
Carry = L§7 indicates the presence of a borrow, therefore

the number is negative and is in two's complement form.

2.2.2.2 Signed Arithmetic

Signed numbers can be subtracted, using the SBC instruction,
just as easily as they can be added. The microprocessor converts the
numbers from memory to its two's complemented form and then adds it

to the value of the accumulator just as it does in an unsigned

subtract described in Section 2.2.2. The addition operation is
identical to that described, and to the examples given in Section
2.2.1.2

It should be remembered that before using the SBC instruc-
tion, either signed or unsigned, the carry flag must be set to a 1 in

order to indicate a no borrow condition. The resultant carry flag

" has no meaning after a signed arithmetic operation.

2.2.2.3 Decimal Subtract

As indicated in Section 2.2.1.3, it is possible to repre-
sent numbers as packed 4-bit BCD numbers. In this case, which is
again unique to this microprocessor, it is possible to make the adder
act as though it were a decimal adder. In this case, the functibn of
the machine is one of correcting for the subtraction of pesitive num-
bers by complementing the number, setting the carry and performing
binary arithmetic with an automatic correction at the time the result
is stored in the accumulator. The unique capabilities of this adder

give the results as shown in the next example.

Example 2.18: Decimal Subtraction

SED Set Decimal Mode

SEC Set Carry Flag

LDA 0100 0100 44

SBC 0010 1001 29

STA 0001 0101 15
By setting the decimal mode and setting the carry flag, one can sub-
tract number 29 from number 44 with the results in the accumulator
automatically being 15.

As has been indicated, one can perform both addition and
subtraction when the machine is set in decimal mode, treating the
bytes to be added as unsigned, positive, binary-coded digits. 1In
addition the carry flag represents the case when the result in the
number exceeded 99, and in subtraction the absence of the carry flag

represents a true borrow situation.
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2.2.3 Carry and Overflow During Arithmetic Operations

It is necessary to set or reset the carry flag prior to the
beginning of any arithmetic instruction. Because the carry flag is
set or reset as a result of the arithmetic operation at the end of
the loop, one. can test the flag to determine whether or not a carry
or a bqrrow occurred in the operation. By proper use of the overflow
flag one can treat the high-order bit of any set of bytes as a sign
bit as lomg as the results of the negative numbers are carried in
two's complement form. The microprocessor also sets the overflow
flip-flop to indicate when a result larger than can be stored in a
7-bit field has occurred and when the resultant sign is incorrect.
In binary arithmetic the carry flag set indicates results in excess
of 256, and in decimal arithmetic indicates results in excess of 99.
Although the input carry is very important to these operations, a

simple rule is: Set the carry flag prior to subtract; clear the

carry flag prior to add.

2.2.4 Logical Operands

In implementing a parallel binary adder there are several use-
ful logic functions which are subsets of a binary add operation. In
the R650N System's microprocessor family, these subsets are employed
implement the logical operands "AND," "OR," and "EOR" (Exclusive Or).
These operations are used to test and control bit manipulations.

2.2.4.1 AND —- Memory with Accumulator

The AND instruction transfers the accumulator and memory to
the adder which performs a bit-~by-bit AND operation and stores the
result back in the accumulator.

This instruction affects the accumulator; sets the zero flag
if ﬁhe result in the accumulator is O, otherwise resets the zero flag|
sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag.

This is symbolically represented by A AM > A,
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AND is a "Group One" instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute, X; Absolute, Y; Zero Page, X;
Indexed Indirect; and Indirect Indexed.

One of the uses for the AND operation is that of resetting a

bit in memory. In the example below,

Example 2.19: Clearing a Bit with AND

LDA 1100 X111, where X 13 0 or 1
AND 1111 0111
STA 1100 0111

a byte is loaded into the accumulator and the AND instruction resets
the accumulator bit 3 to 0. The accumulator is then stored back into
memory, thereby resetting the bit.

2.2.4.2 ORA "OR" Memory with Accumulator

The ORA instruction transfers the memory and the accumulator
to the adder which performs a binary "OR" on a bit-by-bit basis and
stores the result in the accumulator.

This is indicated symbolically by AV M + A.

This instruction affects the accumulator; sets the zero flag
if the result in the accumulator is 0, otherwise resets the zero flag;
sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag. ORA is a "Group One" instruction.
It has the addressing modes Immediate; Absolute; Zero Page; Absolute, X;
Absolute, Y; Zero Page, X; Indexed Indirect; and Indirect Indexed.

To set a bit, the OR instruction is used as shown below:

Example 2.20: Setting a Bit with OR

LDA 1110 X111, where X is O or 1
ORA 0000 1000
STA 1110 1111
2.2.4.3 EOR -- "Exclusive OR" Memory with Accumulator

The EOR instruction transfers the memory and the accumulator
to the adder which performs a binary "EXCLUSIVE OR" on a bit-by-bit

basis and stores the result in the accumulator.



This is indicated symbolically by AWM + A.

This instruction affects the accumulator; sets the zero flag
if the result in the accumulator is O, otherwise resets the zero flag;
sets the negative flag 1if the result in the accumulator has bit 7 on,
otherwise resets the negative flag.

EOR is a "Group One" instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute, X; Absolute, Y; Zero Page, X}
Indexed Indirect; and Indirect Indexed.

One of the uses of the EOR instruction 1is in complementing
bytes. - This is accomplished below by exclusive ORA-ing the byte with
all 1's.

Example 2.21: Complementing a Byte with EOR

LDA 1010 1111
EOR 1111 1111
STA 0101 0000
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CHAPTER 3

CONCEPTSOFFLAGSANDSTATUSREGBTER

One can view each of the individual flags or status bits in the
machine as individual flip-flops. The carry flag can be considered the
ninth bit of an arithmetic operation. The decimal mode flag is set and
cleared by the user and used by the microprocessor to select either binary
or decimal mode. For programming convenience the microprocessor treats
all of the flags or status bits as component bits of a single 8-bit reg-
igter. In Figure 3.1 the processor status register (or "P" register) is

added to the block diagram.

L DATA BUS ]

Y £ 8 ]

ACCUMULATOR FROCESSOR MEMORY
STATUS
A KT A REGISTER M
P

Partial Block Diagram of a R6500 Microcomputer System Microprocessor Including P Registers
FIGURE 3.1

Each of the individual flags or bits has its own particular meaning iu the

microprocessor as defined in Figure 3.2




PROCESSOR STATUS REGISTER

Iw CARRY

ZERO RESULT

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND
EXPANSION

OVERFLOW

NEGATIVE RESULT

Processor Status Register ' P’

FIGURE 3.2

3.0 CARRY FLAG (C)

The carry bit which is modified as a result of specific arithmetic

operations or by a set or clear carry command has been discussed previouslyf

In the case of shift and rotate instructions, the carry bit is used as a
ninth bit as it is in the binary arithmetic operation. The carry flag can
be set or reset by the programmer. A SEC instruction will set and a CLC
instruction will reset the carry flag. Operations which affect the carry
are ADC, ASL, CLC, CMP, CPX, CPY, LSR, PLP, ROL, ROR, RTI, SBC, and SEC.

3.0.1 SEC -- Set Carry Flag

This instruction initializes the carry flag to a 1. This op-

eration should normally precede a SBC loop.
This instruction affects no registers in the microprocessor

and no flags other than the carry flag which is set.
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3.0.2 CLC -- Clear Carry Flag

This instruction initializes the carry flag to a 0. This op-
eration should normally precede an ADC loop.
This instruction affects no registers in the microprocessor

and no flags other than the carry flag which is reset.

3.1 ZERO FLAG(Z)

This flag is automatically set by the microprocessor during any data
movement or calculation operation when the B bits of results of the opera-
tion are 0. Therefore, the bit is on ("1") when the results are 0, and
off ("0") when the results are not equal to 0. The feature of the machine
is similar to that of the PDPll in the sense that operations which are
decrementing (or incrementing) index registers or memory locations have
a built-in test for 0 as a result of decrementing (or incrementing) to
the 0 condition. It is also possible to test for 0 condition immediately
following load and other logical operations, as opposed to processors
which have to do a test and branch instruction. The Z flag is not
directly settable or resettable by an instruction but is affected by the
following instructions: ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY,
EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, ROR, RTI, SBC,
TAX, TAY, TXA, TSX AND TYA. The Z flag is not updated after a resulting
decimal addition or subtraction (ADC, SBC).

3.2 INTERRUPT DISABLE (I}

The interrupt disable is a flip-flop made use of by the programmer
and by the microprocessor to control the operations of the interrupt re-
quest pin. A more detailed discussion of the effects of the interrupt
disable are given in the discussion under interrupt control. However, the

purpose of the interrupt disable is to disable the effects of the interrupt

request pin (IRQ. The interrupt disable, I, is set by the microprocessor dur-

ing reset and Interrupt commands. The 1 bit is reset by the CLI instruc-
tion or the PLP instruction, or at a return from interrupt in which the
interrupt disable was reset prior to the interrupt. The interrupt flag

may be set by the programmer using a SEI instruction and is cleared by the
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programmer with a CLI instruction. Instructions which affect the

interrupt disable are BRK, CLI, PLP, RTI and SEI.

3.2.1 SEI -- Set Interrrupt Disable

This instruction initializes the interrupt disable to a 1 It
is used to mask interrupt requests during system reset operations and
during interrupt commands.

It affects no registers in the microprocessor and no flags
other than the interrupt disable which is set.

SEI is a Si"gle b)te instruction and its add18551“g mode is
Implled.

3.2.2 CLI -- Clear Interrupt Disable

This instruction initializes the interrupt disable to a O

This allows the microprocessor to receive interrupts.

It affects no registers in the microprocessor 2ad no flags

other than the interrupt disable which is cleared.

CLI is a single-byte instruction and its addressing mode is
Implied.

3.3 DECIMAL MODE FLAG (D)

As discussed, the purpose of the decimal mode flag is to control whether

or not the adder operates as a straight binary adder for add and subtract
instructions, or as a decimal adder for add and subtract instructions The
SED instruction sets the flag and the CLD instruction resets it. The only

instructions which affect the decimal mode flag are CLD, PLP, RTI and SED

3.3.1 SED -- Set Decimal Mode

This instruction sets the decimal mode flag D to a 1. This
makes all subsequent ADC and SBC instructions operate as a decimal
arithmetic operation.

SED affects no registers in the microprocessor and no flags
other than the decimal mode which is set to a 1.

3.3.2 CLD -- Clear Decimal Mode

This instruction sets the decimal mode flag to a 0. This
causes all subsequent ADC and SBC instructions to operate as simple
binary operations.

CLD affects no registers in the microprocessor and no flags

other than the decimal mode flag which is set to a 0.

3.4 BREAK COMMAND (B)

The break command flag is set only by the microprocessor and 1is used
to determine during an interrupt service sequence whether or not the inter-
rupt was caused by BRK command or by a real interrupt. A more detailed
discussion of BRK is in the interrupt section. This bit should be con-
sidered to have meaning only during an analysis of a normal interrupt se-

quence. There are no instructions which can set or which reset this bit.

3.5 EXPANSION BIT

The next bit in the flag register is an unused bit. It is most likely
that this bit will appear to be on when one is analyzing the bit pattern
in the processor status register; however, no guarantee as to its state is

made, as this bit will be used in expanded versions of the microprocessor.:

3.6 OVERFLOW(V)

As discussed in the section on arithmetic operations, if one is to
jook at the binary arithmetic operations as signed binary operations, there
needs to be some indication of the fact that the result of the arithmetic
operation has a greater value than could be contained in the 7 bits of
the result. This bit is the overflow bit and during ADC and SBC instruc-
tions represents a status of an overflow into the sign position. The user
who is not using signed arithmetic can totally ignore this flag during
his programming; however, this flag has the same meaning as the carry to
the user who is using signed binary numbers. It indicates that a sign
correction routine must be used if this bit is on after an add or subtract

using signed numbers.




In addition to its use for monitoring the validity of the sign bit

in ADC and SBC instructions, the overflow flag is dramatically different
from tne overflow flags from PDPI1 and the MC6800. 1In each of those sys-
tems the overflow flag was very carefully controlled so as to allow cer-
tain signed branches for analysis of signed numbers. These branches have
been deleted from the R6500 System's microprocessor series because of con-
fusion .and difficulty often associated with using them, and, accordingly,
the overflow flag is applicable only to the operation of ADC and SBC, and
then only when signed numbers are being used.

However, in order to maximize the effectiveness of this testable flag
the BIT instruction which may be used to sample interface devices, allows
the overflow flag to reflect the condition of bit 6 in the sampled field.
During a BIT instruction the overflow flag is set equal to the content of
che bit 6 on the data tested with BIT instruction. When used in this mode,
the overflow has nothing to do with signed arithmetic but is just another
sense bit for the microprocessor. Instructions which affect the V flag are
ADC, BIT, CLV, PLP, RTI and SBC. On certain versions of the microproces-

sor the V bit will also be available for stimulus from the outside world.

3.6.1 CLV ——- Clear Overflow Flag

This instruction clears the overflow flag to a 0. This com-
mand is utilized in conjunction with the set overflow pin which can
change the state of the overflow flag with an external signal.

CLV affects no registers in the microprocessor and no flags
other than the overflow flag which is set to a 0.

t
3.6.2 Determination of Overflow

To briefly recap the concept of overflow detection, one must
understand that the machine signals an overflow based on the data

entered to the operation and the final result. Since, with signed

the overflow flag will never be set when numbers of opposite sign are
added, since their result will never exceed that range. The machine
deals with this by recognizing that for any two positive numbers, the

"pit 7" of each is a'0," and that for any arithmetic operation
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arithmetic, the range of numbers that can be represented is +127 to -1l

ylelding a result less than or equal to +127, the resultant “bit 7"
must be a "0." If it is a 1, the overflow flag is set.

Similarly, when two negative numbers are added, the "bit 7" of
each 1s a "1" and for any result yielding a value less than or equal
to -128, the resultant "bit" must be a "1.'" 1f it is a O, the over-
flow flag is set.

Therefore, the machine recognizes by knowledge of the "bit 7"
of each of the numbers to be added what the resultant "bit 7" must be
in a non-overflow situation. If these conditions are not met, the

overflow flag goes set.

3.7 NEGATIVE FLAG (N)

As already discussed, one of the uses of the microprocessor is to per-
form arithmetic operations on signed numbers. To allow the user to readily
sample the status of the sign bit (bit 7), the N flag is set equal to bit 7
of the resulting value in all data movement and data arithmetic. This
means, for instance, after a signed add one can determine the sign of the
result by sampling the N flag directly rather than finding a way to iso-
late bit 7. Although signs were the primary purpose for which the N flag
was intended, its usefulness far exceeds that of strictly a sign bit.
Because of every operation including simple moves and add operations the N
bit is equal to the status of bit 7 as a result of the operation; its pri-
mary use becomes that of an easily testable bit. Almost all single-bit in-
structions, all interrupts and all I/0 status flags use bit 7 as a sense bit.
This allows the user to perform some type of memory access operation such
as Load A followed by immediate conditional branch based on the status of
bit 7 as reflected in the N flag. Like the Z bit, this flag is not settable
or controllable by the programmer and represents the status of the last data
movement operation. Instructions which affect the negative flag are ADC,
AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX,
LDY, LSR, ORA, PLA, PLP, ROL, ROR, RTI, SBC, TAX, TAY, TSX, TXA and TYA.




3.8 FLAG SUMMARY

To summarize, the microprocessor treats a series of flags or status
bits as a single register called the "P" or "Program Status' register.
Some of these flags are controllable only by the programmer (such as the D
flag); others are controllable by both the user program and microprocessor
(such as the interrupt disable flag). Some of them are set and reset by
almost every processor operation, such as the N and Z flags. Each of these
flags has its own meaning to the programmer at a particular point in time.
When combined with the concept of conditional branches, they represent a
powerful test and jump capability not normally found in a machine of
this magnitude. Except, perhaps, for the carry flag which is used as
part of the arithmetic instructions, the flags by themselves have
relatively little meaning unless one has the ability to test them.

For ;his purpose a series of conditional branch instructions is designed

into the machine.

CHAPTER 4

TEST, BRANCH AND jUMP INSTRUCTIONS

4.0 CONCEPTS OF PROGRAM SEQUENCE

To this point, this manual has presented little discussion of how the
microprocessor understands the instructions used to perform various arithmetic
and accumulator manipulations. However, it is appropriate that the concept
of a program and how the microprocessor determines each instruction be de-
veloped. More registers are required in the machine as shown in the

figure below.

[ DATA BUS il
g g 1 _& 8 &
A Ko A PCL PCH P

‘ U
INTERNAL ADL |

SN2
[ INTERNAL ADH ]
ABL ABH
4
MEMORY

Partial Block Diagram of a R6500 Microcomputer System Microprocessor Including Program Counter and
Internal Address Bus
FIGURE 4.1




Although two 8-bit registers have been added, they are the only
registers in the machine that act as though they are one 16-bit reg-
ister. They implement a concept known as 'program count" or "program
sequence"”, and subsequently their value will be referred to as "PC" or
"program count™. In certain operations it may be convenient to talk
about how one affects the "program count low" (PCL) which will be the
lower 8-bit register or the "program count high" (PCH) vhich will be the
higher 8—big register. The reason for this register's being 16 bits in
length is that if it had only 8 bits it would be able to reference only
256 locations. Since it is through the address bus that one accesses
memory, the program counter which defines the addressable location

should be as "wide" a word as possible.

The accessing of a memory location is calied "addressing”. It is
the selection of a particular eight-bit data word (byte) out of the
65,536 possibilities for memory data locations. This selection is trans-
mitted to the memory through the 16 address lines (ADH, ADL) of the micro-
processor.

For a more detailed discussion of how an individual memory byte is
selected by the address lines, the reader is referred to Chapter 1 of
the Hardware Manual.

If the program counter were only 1 byte and if the bit pattern which
allows the microprocessor to choose which instruction it wants to act on
next, such as "LDA" as opposed to an "AND", were contained in one byte of
data, we could have only 256 program steps. Although the machine of this
length might make an interesting toy, it would have no real practical
value. Therefore, almost all of the competitive 8-bit microprocessors
are designed with a doutle-length program counter. Even though some
of the microprocessors of the P§500 Microcomputer System do not have all of
the output address lines necessary to allow the user to address 65K bytes of
program (due to package pinout constraints), in all cases the program
counter ‘PC) is capable of addressing a full 65K by virtue of its 16-bit
length.

4.0.1 Use of Program Counter to Fetch an Instruction

The microprocessor contains an internal timing and state con-
trol counter. This counter, along with a decode matrix, governs the
operation of the microprocessor on each clock cycle. When the state
of the microprocessor indicates that a new instruction is needed,
the program counter (program address pointer) is used to choose
(address) the next memory location and the value which the memory
sends back is decoded in order to determine what operation the micro-
processor is going to perform next.

To utilize the program counter to perform this operation cor-—
rectly, it must always be addressing the operation the user wants
to perform next. This operation may be an instruction, or it may be
data on which the instruction will operate.

In the R6500 System's microprocessor family, the program counter
is set with the value of the address of an instruction. The micro-
processor then puts the value of the program counter onto the address bus,
transferring the 8 bits of data at that memory addrese into the instruc-
tion decode. The program counter then automatically increments by
one,and the microprocessor fetches further data for address operation

necessary to complete the instruction. In the simple example below,

Example #4.1: Accessing Instructions_g}}hrthc P-Counter Value

P Counter* Location Contents

0100** LDA *Program Counter
0101 ADC *%Hexadecimal
0102 STA Notation

one can see how the program counter is uced to access the instruc-
tion secuence load A, add with carry, and storc the result. In this
example, the program counter would start out containing 0100. The
microprocessor would read Jocation 0100 by using the program counter
to access memory, and would then interpret and implement the LDA in-
struction as previously described. The program counter will auto-

matically increment by 1 on each instruction fetch, stepping to

0101. After performing the LDA, the microprocessor would fetch the




an

next instruction addressing memory with the program counter. This
would pick up the ADC instruction, the add would then be performed,
the program counter which has been incremented to 0102 would be used
to address the next instruction, STA. The P counter incrementing
once with each instruction is an oversimplified view of what actu-
ally transpires within the microprocessor.

The R6500 series of microprocessors (CPUs) usually require more
than one byte to correctly interpret an instruction. The first byte of
instruction is called the OP CODE, and it is coded to contain the basic
operation such as LDA (load accumulator with memory) and also the data
necessary to allow the microprocessor to interpret the address of the da
on which the operation will occur. In most cases, this address will
appear in memory right after the OP CODE byte. This allows the micro-
processor to use the program counter to access the address as vell as
the OP CODE.

The following example shows how the program counter picks up

the instruction and the address of data located at address 5155.

Example 4.2: Accessing Data Address With P-Counter Value

P Counter Location Contents

0100 LDA
0101 55
0102 51
0103 Next Instruction

The OP CODE appears in Location Address 0100. The code for the 55
would appear next in Location Address 0101 and the 51 would appear
in Location Address 0102, and the OP CODE for the next instfuction
appears in Location Address 0103. In this example, we see that the
program counter is used not only to pick up the operation code, LDA,
but also to pick up the address of the memory location from which
the LDA is going to obtain its data. 1In this case, the program
counter automatically is incremented three times to pick up the full
instruction with the microprocessor interpreting each of the indivi-

dual fetches as the appropriate data. In other words, the first
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fetch is used to pick up the OP CODE, LDA, the second fetch 1is used to
pick up the low-order address byte of the data,and the third fetch is
used to pick up the high-order address byte of the data. This is the
form in which many of the microprocessor instructions will appear, as
it is the most simple form of addressing in the machine and allows
referencing to any memory location.

Assuming that the microprocessor has the ability to start the
program counter at a known instruction, it should be fairly obvious
that the program counter would then continue to advance from that
location up to the maximum memory location, roll over to the least
memory location and continue Incrementing through the memory, fetch-
ing instructions and addresses as it went. This would give us an
interesting sequential program but one which lacked one tremendously
powerful concept. The program would have no ability to perform tests
or implement various options based on the results of those tests.

In the previous section, the concept of flags which are set as
a result of the microprocessor operations was developed.

To use these flags, the program should be able to test them
and then change the sequence of operations which are being performed
depending on the result of the test. The program counter is going
to continually put out an address, the microprocessor is going to
fetch the instruction stored at that address and perform operations
based on that instruction. In order to change a sequence of perform-
ed instructions by the microprocessor, the programmer must change the
value in the program counter. Therefore, test instructions are in-
corporated which may result in a change of program count sequence as
a result of performing one of the tests. The simplest way to change
program sequence is to substitute a new value into the program counter
location. 1In the R6500 System's series of microprocessors the
simplest way to change the program count sequence is with a JMP

instruction.




4.0.2 JMP -- Jump to New location

In this instruction, the data from the memory location
located in the program sequence after the OP CODE is loaded into the
low-order byte of the program counter (PCL) and the data from the
next memory location after that is loaded into the high-order byte
of the program counter (PCH).

The symbolic notation for jump is (PC + 1)-»PCL, (PC + 2)-PCH.
As stated earlier, the "( )" means 'contents of" a memory location.
PC indicates.the contents of the program counter at the time the
OP CODE is fetched. Therefore (PC + 2)+PCH reads, "the contents of
the program counter two locations beyond the OP CODE fetch location
are transferred to the new PC high order byte."

The addressing modes are Absolute and Absolute Indirect.

The JMP instruction affects no flags and only PCL and PCH.

The JMP instruction allows use of the program ccunter to access

the new program counter value as illustrated by the following example:

Example 4.3: Use of JMP Instruction (Absolute Addressing Mode)

Address Data Comments
0100 JMP Jump to Location 3625
0101 25 (New PCL byte)
0102 36 (New PCH byte)
' 3625 OP CODE Next Instruction

The program counter in the example starts out at location 100. The

microprocessor loads a jump instruction. The program counter auto-
matically increments to 101 where the microprocessor picks up and
temporarily stores the 25. The program counter automaticall; in-
crements to 102 where the microprocessor picks up the 36.

The 3625 is substituted into the program counter and is used
to address the next instruetion. Therefore, the JMP instruction
contains within its address the new program counter locatiom.

Although the jump allows the change of program sequence, it
does so without performing any test. So it is a JMP instruction that
is employed when it is desired to change the program counter no matter

what conditions have occurred.
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Another JMP addressing tode is the Indirect Addressing Mode. Before
this technique can be understood, the basis of indirect addressing
instruction is

found in Chapter 6 must be reviewed. The JMP Indirect

detailed in Chapter 9.

4.1 BRANCHING

To allow for conditional program sequence change, eight conditional
. branch instructions are available for testing and performing optional
.Changes of the program counter based on the status of the flags. To
;perform a conditional change of sequence, the microprocessor must interpret
¢ the instruction, test the value of a flag, and then change the P counter if

. the value agrees with the instruction. [f the condition is not met, the

. program counter continues to increment in 'its normal fashion. Figure 4.2

jillustrates how a conditional test might be used.

r LOAD VALUE

r ADD VALUE; l

TEST

BRANCH TO NEW CARRY STATE
PROGRAM COUNTER 1S CARRY
LOCATION SET (=1)

?

CONTINUE IN
PROGRAM SEQUENCE

Use of Conditional Test
FIGURE 4.2
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In this example, it is seen that generation of a carry from the add

operation will allow an out-of~sequence branch to a new location.

4.1.1 Basic Concept of Relative Addressing

If one considers that the instruction JMP trequired three
bytes, one for OP CODE, one for new program counter low (PCL), and
one for new program counter high (PCH) 1t is seen that jump on carry
set would also require three bytes. Because most programs for con-
trol require many continual jumps or branches, the R6500 Series uses
“relative' addressing for all conditional test instructions. To
perform any branch, the program counter must be changed. In rela-
tive addressing, however, we add the value in the memory location
following the OP CODE to the program counter. This allows us to
specify a new program counter location with only two bytes, one
for the OP CODE and one for the value to be added.

To 1llustrate this, in the following example, the branch on
carry set (BCS) illustration is followed by a value of 50. If the
carry is set, the new program location would be 108 + 50 = 158; in
other words, it will take the branch.

Example 4.4: Illustration of "Branch on Carry Set'

Address Data Comments
0100 LDA Load First Value
0101 ADL1 First Number, Low Byte
. 0102 ADH1 First Number, High Byte
0103 ADC Add Second Value
0104 ADL2 Second Number, Low Byte
0105 ADH2 Second Number, High Byte
0106 BCS Test for Carry Set. If
Yes, Branch to 0158
0107 +50
0108 STA I1f Not, Store Results
of Add
0109 ADL3 Result, Low Byte
010A ADH3 Result, High Byte
0158 OP CODE New Instruction
4-8

The 0108 represents the value of the program counter after
reading the offset value. The program counter automatically incre-
ments so it can reference the next memory location on the next cycle.
The add of the offset is a signed binary add as discussed in the arith-
metic section. A positive branch is indicated by a 0 in bit 7 of the
relative value, and a minus branch is in two's complement form and is
indicated by a 1 in bit 7. The inherent capabilities of this type of
notation system allow branch conditionally forward 127 bytes from
the next instruction and back 128 bytes from that instruction. All
branches in the R6500 series are conditional relative branches
and all have the form shown above. The advantage of relative ad-

dressing is best shown in the following example:

Example 4.5 Sequencing Two Branch Instructions

Address Data Comments

0100 LDA Load First Value

0101 ADL1

0102 ADH1

0103 ADC Add Second Value

0104 ADL2

0105 ADH2

0106 BCS Test for Carry Set. If
Yes, Branch to 0158

0107 +50

0108 BMIL Test for Minus Number.
1f Yes, Branch to 0095

0109 -75

010A STA If Not, Store

010B ADL3

010C ADH3

In this example, the previous single-branch example was modi-
fied to also test the resulting number to see if it is negative. In
sequencing two-branch instructions, this loop is two bytes shorter by

use of relative branches rather than three byte branches.
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4.1.2 Branch Instructicns

4.1.2,1 BMI -- Branch on Result Minus

This instruction takes the conditional branch if the N bit
is set (1). Branch on result minus is used to determine if the previous
result was minus or bit 7 was on (1).
BMI does not affect any of the flags or any other part of
the machine except the program counter and then only if the N
bit is set.

The mode of addressing for BMI is Relative.

4.1.2.2 BPL -- Branch on Result Plus

This instruction is the complementary branch to branch on
result minus. It is a conditional branch which takes the branch when
the N bit is reset (0). BPL is used to test if the previous result
bit 7 was off (0).

The instruction affects no flags or registers other
than the P counter and only affects the P counter when the N bit is
reset.

The addressing mode is Relative.

4.1.2.3 BCC -- Branch on Carry Clear

This instruction tests the state of the carry bit and takes
a conditional branch if the carry bit is reset (0).

It affects no flags or registers other than the program
counter and then only if the C flag is reset,

The addressing mode is Relative

4.1.2.4 BCS -- Branch on Carry Set

This instruction takes the conditional branch if the carry
flag is set (1).

BCS docs ?ot affect any of the flags or registers except for
the program counter and only then if the carry flag is set.

The addressing mode is Relative.

4.1.2.5 BEQ -- Branch on Result Zero

This instruction could also be called "Branch on Equal."
It takes a conditional branch whenever the Z flag is set (1), indicating
that the previous result was equal to O,

BEQ does not affect any of the flags or registers other than
the program counter and only then when the Z flag is set.

The addressing mode is Relative.

4.1.2.6 BNE -- Branch on Result Not Zero

This instruction could also be called "Branch on Not Equal."
It tests the Z flag and takes the conditional branch if the Z flag is
reset (0), indicating that the previous result was not zero.

BNE does not affect any of the flags or registers other than
the program counter and only then if the Z flag is reset.

The addressing mode is Relative.

4.1.2.7 BVS -- Branch on Overflow Set

This instruction tests the V flag and takes the conditional
branch if V is set (1)

BVS does not affect any flags or registers other than the
program counter and ouly when the overflow flag is set.

The addressing mode is Relative.

4,1.2.8 BVC -- Branch on Overflow Clear

This instruction tests the status of the V flag and takes
the conditional branch if the flag is reset (0).

BVC does not affect any of the flags or registers other
than the program counter and only when the overflow flag is reset.

The addressing mode is Relative.




4.1.3 Branch Summary
Example 4.6: Use of JMP to Branch Out of Range

To summarize, the R6500 branches have two characteristics;

Address Data Comments

each of them tests the state of a flag and then either accesses the

. . . 100 LDA Load First Value
next instructionm in program sequence if the flag is not in the tested 101 ADLL
state or adds the offset value to the PC value at the OP CODE of 102 ADiLL

. . of the 103 ADC Add Second Value
next instruction (PC + 1) to allow the program to change operations. 104 ADL2
This gives the programmer the full ability to make decisi 105 ADHZ

Y ecisions. By 106 BCC Branch, if Ho Carry,

writing a sequence of branch instructions, any combination of condi- Ahead 3 (to Point 2)

tions of the microprocessor may be determined d 107 -

y ined and new action taken 108 JMP I1f Carry set, Jjump to
as a result of the tests. Location Specified by

There are four branch conditions in the R6500 Series micropro- 109 ADL& ADH4, ADL4
cessors. These are branch on carry flag, branch on overflow flag, 10A ADH4
branch on N flag, and branch on zero flag. Each of the branches has Point 2 182 g?; . Check for Minus
se
a branch on flag set (1) or branch on flag clear (0). 10D STA
10E ADL3 If not !inus, f{tore
Result

4.1.4 Solut%on to Branch Out of Range 10F ADH3

The branch relative instruction is unlike the jump instruc~- In this example, carry set is being checked. In order to accomplish

tion which can reach anywhere in memory, since branch relative is this when the branch command would have to reach outside of the 128
limited to +129 or -126 from the current program coynter location. range, the use of a complementary branch is required. Instead of
Although for many loops and many tests this is sufficient range, doing the "branch on carry set" to the location, the 'branch on
longer programs will occasiomally find it necessary to condition- carry clear" is utilized (a complementary instruction) which branches
ally branch to a location that is significantly further away than past the jump. If the complementary branch is not taken, the jump is
the branch command will directly reach. This is one of the uses the "branch on carry set'" function.
of complementary branches. If a program should find it necessary This technique of branching past a jump with the complementary
to branch to a location which was significantly further away than branch is a universal solution to the branch out of range problem.
129, the following solution would facilitate the branch: Another solution 1s to find a like branch to the same location

that is within range and, although this involves two branches to trans-

fer control, it does save memory locations.

By use of the relative branch fewer bytes of code are required than
1f a conditional jump had been used. However, in large programs, the
branch out of range occurs more frequently. If the user can determine
that a branch will be out of range by inspection, he should apply the

jump solution at the time he is writing the code. Otherwise, the

L™




4.2 TEST INSTRUCTIONS

assemblers will indicate an out-of-range branch which will require Although most of the normal operations of the microprocessor involve
recoding to use the jump solution. "v setting of flags, there are specific instructions which are designed only

to set flags for testing with the branch instruction.

4,2.1 CMP - Compare Memory and Accumulator

This instruction subtracts the contents of memory from the
contents of the accumulator.

Its symbolic notation is A - M.

The use of the CMP affects the following flags: Z flag is
set on an equal comparison, reset otherwise; the N flag 1s set or
reset by the result bit 7, the carry flag is set when the value in
memory is less than or equal to the accumulator, reset when it is
greater than the accumulator. The accumulator is not affected.

It is a "Group One" instruction and therefore has as its
addressing modes: Immediate; Zero Page; Zero Page, X; Absolute;
Absolute, X; Absolute, Y; (Indirect, X); (Indirect), Y.

The purpose of the compare instruction is to allow the user
to compare a value in memory to the accumulator without changing
the value of the accumulator. An example of where this becomes
extremely important is when one is receiving command instructions
from an external device. In this case, an input byte may have
several values. Each value can cause the program to perform a
different operation. The only rapid way to determine the value of
H 3 the input data is to compare the memory with a series of constants.
‘ It is fairly simple to perform "compare to constant" operations.
By use of the immediate addressing mode which will be developed
<§ later, the following example compares an input to three values

and branches to different locations for each:
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Example 4.7: Using the CMP instruction 4.2.2 Bit Testing

The comparison instruction is designed for cases when byte or

Data Comments

multiple bytes of values are being compared; however, in the analysis
kg: kjjiezzltzw 3 of logic functions, it is very often necessary to determine the con-
ADH Address High dition of an individual bit. One of the ways to accomplish this is
ggiNT 1 Compare COUNT 1 to Accumulator with the use of the AMD instruction as previously discussed. In other
BEQ 1f Equal, Take the Branch of OFFSET 1 words, the user can load a value into the accumulator and AND it with
ES;SET ! Compare COUNT 2 to Accumulator a field thar contains a one bit only in the corresponding bit pos-

! COUNT 2 tion to the bit under test. By using a Branch on Zero Flag after
gggSET 2 If Equal, Take the Branch of OFFSET 2 | the AND, the status of the bit in memory is testable by this tech-
CMP Compare COUNT 3 to Accumulator nique. However, the use of this technique involves destroying the
gggNT 3 If Equal, Take the Branch of OFFSET 3 . accumulator value with the AND instruction. Therefore, searching a
OFFSET 3 table looking for a single bit in a given position would necessitate
Next Inst: g;::;wi:eﬁe$2uit 3:T5e122863;t22? & the reloading of the test value (mask) after each AND instruction.

This example shows how to use the default option. A value : In order to allow memory sampling without disturbing the accumulator,

was compared against three values and, if none were equal, a fourth or the BIT instruction is used.

default value is assumed. This is a useful technique for code - - 4.2.2.1 BIT -- Test Bits in Memory with Accumulator

minimizacion. This instruction performs an AND between a memory location
i ti is designed to allow a signed compari-
The compare imstruction 8 & and the accumulator but does not store the result of the AND into
son between two values, assuming one makes appropriate use of the Z and s
the accumulator.
. rd to give maximum flexibility to the instruc-
N and C flags Tn order & Y The symbolic notation is M A A,

tion, the instruction performs an effective.subtract between the value = The bit instruction affects the N flag with N being set to

in memory and the value in the accumulator. The reason it is an ef- the value of bit 7 of the memory being tested, the V flag with V

fective subtract is that subtraction permits the user to compare equat being set equal to bit 6 of the memory being tested and Z being set

or less with one instruction. by the result of the AND operation between the accumulator and the
The results of a compare are:

memory if the result is Zero, Z is reset otherwise. It does not
N c Z v j.. affect the accumulator.
Accumulator < Memory EIther Reset Reset Unchanged i The addres;ing modes are Zero Page and Absolute.
Accumulator = Memory Reset Set Set Unchanged The BIT instruction, like the compare test, permits the examination of
Accumulator > Memory Either Set Reset Unchanged

an individual bit without disturbing the value in the accumulator and is
So, to check if the accumulator is less than memory, the com-

illustrated by the following example:

pare is followed by a BCC; to check if equal to it is followed by a BEQ;
and to check if greater it is followed by a BEQ followed by a BCS.

Greater than or equal to is checked by BCS.
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Example 4.8: Sample Program Using the BIT Test ) the BIT instruction, bit 7 from the memory being tested is set

into the N flag irrespective of the value in the accumulator.

Data Comment s

- This is different from the BIT instruction in the M6800 which re-
LDA Load MASK into Accumulator

MASK ' quires that bit 7 also be set in the accumulator to set N. The
B;Il Test First Memory Value for Mask Bit advantage to the R6520 user is that if he decides to test bit 7
AD .

ADH1 in the memory, it is dore directly by sampling the N bit with a
Ezg Branch if Set Bit followed by branch minus or branch plus instruction. This
BIT Test Second Memory Value for Mask Bit 8 means that with the R6520, I/0 sampling can be accomplished at
ﬁghg any time during the operation of instructions irrespective of the
BNE Branch if Set : value preloaded in the accumulator.

‘ZS Another feature of the BIT test is the setting of bit 6 into
etc.

7; the V flag. As indicated previously, the V flag is normally reserved

The value "MASK" loaded into the accumulator in this example for overflow into the sign position during an add and subtract in-

is actually a descriptive title since this byte is 8 bits only one struction. 1In other words, the V flag is not disturbed by normal

of which is a 1. Using this byte in the AND operation inherent in the instructions. When the BIT instruction is used, it is assumed that

BIT test will effectively mask our all bits in the memory location under the user is trying to examine the memory that he is testing with the

> e i asiti - 5 i sidi i he
test except that bit position corresponding to the 1 residing in the BIT instruction. In order to receive maximum value from a BIT in-

. B > » 5K v i ND' ¢ o : ‘;..
accumulator. In Example 4.8, the MASK byte is AND'cd to the data struction, bit 6 from the memory being tested is set into the V flag.

found in location ADHl, ADL] and if the bit under test is a 1, the In the case of a normal memory operation, this just means that the

branch will be taken; if not a 1, the sccond memory location will be user should organize his memory such that both of his flags to be

tested with the same mask, etc. tested are in either bit 6 or bit 7, in which case an appropriate

i - . " ~tive fe: 3 it whicl
In addition to the nondestructive feature of the bit which mask does not have to be loaded into the accumulator prior to imple-

allows us to isolate an individual bit by use of the branch equal or oy menting the BIT instruction. In the case of the R6520, the BIT

branch not equal test, two modifications to the PDP-11 version of that

o, instruction can be used for sampling interrupts, irrespective of the
ins Ui ave ¢ ade i » RASON serices nmiero; censors. These it
instruction have been made in the RO serics microprocessor s mask. This allows the programmer to totally interrogate both bit 6 and

. oo P Seres N v i - Ve i 7 . i { 3 Pe
modifications are made to permit a test of hit 7 and bit 6 of the ficld bit 7 of the R6520 without disturbing the accumulator. In the case

amine i T tes This fer cis particalarl seful in scrving
examined with the BIT test. This feature is particalarly usefu nosev I3 of the concurrent interrupts, i.e., bit 6 and bit 7 both on, the fact
«dinte 3, ¢ 'S i ;i sating with the R6520 Peripheral
polled interrupts, and especially in deating with the h eriphe that the V flag is automatically set by the BIT instruction allows
srface Duvice This device has an inter sense bit in bit 6 and bit]
Interface Davice. This device has an interruapt sense bit in bit 6 and b : the user to postpone testing for the "6th bit on" until after he has
of the status words. 1t is a standard of the MABOO bas that whenever

totally handled the interrupt "for bit 7 on" unless he performs an
possible, bit 7 reflects the interrupt status of an 1/0 device. This

arithmetic operation subsequent to the BIT operation.

means that under normal circumstances, an analysis of the N flag
after a load or BIT instruction should indicate the status of the

bit 7 on the 1/0 device being sampled. To facilitate this test using




CHAPTER 5

NON-INDEXING ADDRESSING TECHNIQUES

5.0 ADDRESSING TECHNIQUES

i The addressing modes of the R6500 Microcomputer System's micronrocessor
(CPU) family can be grouped into two major categories: indexed and non-
indexed addressing. This section deals with the non-indexed mode of address-
ing. Before detailing the various modes available to the user, several con-
cepts wi!l be reviewed. The first of these is the concept of memory field.

address bus and dara bus. Then a hrief introduction to two non-indexed add-

ressing modes and timing will be made with the intent of preparing the read-

er for a discussion of program sequence and the internal activity of the
microprocessor during execution of an instruction. This will be followed by
a review of how one treats memory ard the assorted allocation of memory space
to the elements of RAM, ROM and 1/0.
Subseauent to reading this section the user should have an understand-
ing of the following fundamenrtals:
e Memory Field
e Address Bus
e Data Bus
e Cycle Timing
e Program Sequence
e Pipelining
With these tools in hand, the reader will Fte better prepared to readily
f:comprehend the detailed definitions of the non-indexed addressing modes.
As ciscussed in Secifon 1.1, the R6500 System's microprocessor family
% is organized around a l6-bit address function. All locations are accessed
by a 16-bit word, even though in the case of the R6503 thru 6507 and 6513
thru 6515 only 11 or 12 bits are actually utilized.
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Sivteen bits of address allow aceess to 65,536 memory locations-,

ol which, in the R6500 scrics, consists of B bits of data, Fipure H.

displays the total memory field and incorporates the concept ol address bus

and data bus. The memory address can be regarded as 256 pages (each page

defined by the high-order byte) of 256 memory locations (hytes) per page.

It will be seen in the detailed discussion of addressing that the lowest-

order page, page zero, has special significance in the minimization ol pro-
gram code and executjon time.
Much of the uniqueness of the R6500 product fomily has to do with

how the 16-bit address is created. The simplest way to create a 16-bit ad-

dress is for the programmer to indicate to the microprocessor the 16 Lits

necessary to access a particular operand on which the microprocessar is ex-

pected to operate. An instruction consists of 1, 7, or 3 bytes. 1t always

takes 1 byte to specify the operation which is to be performed (VP CODL).

This OP CODFE is then followed by 0, 1, or 2 bytcs ol address depending on

the specific operation involved. In the casce of the simple instructions

such as transler accumulator to X, operations dre performed inteinally and,

"low-order byte of the address,” hence address low (ADL). Location 0102

contains ADH -- the "high-order byte of the address," hence address high

(ADH). At the next clock cycle, the 16 bits composed of ADH and ADL are nut

on the address bus with the location defined by ADH, ADL containing the data

to be loaded into the accumulator. The effective address of the data is best

described in Figure 5.1, where the 16-bit address (ABOO through AB1S5) is com-

posed of ADH and ADL.

This is the normal form for an absolute memory address. The first byte

of the instruction which is picked up by the program counter js the operation

' code. This is interpreted by the microprocessor as "Load A - Absolute.' At

the same time that this Load A is being interpreted by the microprocessor, the
nicroprocessor accesses the next memory location by putting the program coun-—

ter content, which was incremented as the OP CODE was fetched, on the addr-ss

bus.

therefore, no additional bytes are necessary. This instruction mode is
" T . ) . L 5.1 CONCEPTS OF PIPELINING AND PROGRAM SEQUENCE
known as "Implied” in the sensc that the instruction contains hoth the OF 3
CODL and the source and destination for the cperation.  This is the wimplest The overlap of fetching the next memory location while interpreting the
! n ry s : :
form of addressing and applies to only a limited number af the instructions currert data from memory minimizes the op-ration time of a normal 2- or 3-byte
available in the R6M00 familv. Ancther form of addressing, b tuie ad- {nstruction and is referred to as “pipelining.”’ It is this feature that
dressing, is the case when the programmer specilies Jirecot !y te the nicio- # allows a Z-byte instruction to take only 2 clock times and a 3-byte instruc-—
processor the address he wants the microprocesser to use in tetobing the tion to be interpreted in 3 clock cycles.

memory value on which the operation will occur. This form v iJlustrated
v by the example below.
: Example 5.1: Using Absolute Addressing
+
fE Clock Cycle Address Bus Data Bus
[ T
H
ié 1 0100 LDA, Absolute
2 0101 ADL
3 0102 ADH
4 ADH, ADL Data

In this example, memory location 0100 contains the

lute." The next location, 0101, contains ADL which will be def ined as the

"~

OP CODE "LDA Abso-|§

In the R6500 series microprocessors, a clock cycle is defined as one

complete operation of each of the fwo phase clocks. Figure 5.2 is a sketch

of the address and data bus riming as ir relates to the system clocks.

The major point to be noted is that every clock cycle in the micro-

" arocessor is a memory cycle in which memory is either read or written. Simul-

~ taneously with the read or write of memory, an internal operation of the

. microprocessor is also occurring.
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‘é’ a L A ' ' ' Vo '
LW
B 3 Example 5.2: Demonstration of "Pipelining" Effect
T 3 ol £ o o C v b e o
<zl o & S & a1 o [ I 2
& z Clock
I — - ] —— 2 Cycles External Operation Address Data  Internal Operation
ol o = 1 Fetch OP CODE 100 ADC Increment P~counter
> (@] EEN (et} - . N o (&) Lokl EA < —
L ox = w r * - = to 101
[8) (o] i o~ o o ~ed [fal -
mox i Al AT A S w
o P NeS © o NS £
S % 2 Fetch first-address 101 ADL Increment P-counter
& I half from memory to 102, Interpret
=) o <« | o -l o e — ~ A ADC instruction
) o o — o — o o — 3 N R
ul o o o S -t —~ o =2 ol Q g 3 Fetch second ad- 102 ADH Increment P-counter
v - o o ~ | o —~ | o o — ? . dress half from to 103; Hold ADL
o < - memory
3 ~1 o o e~ = -~ o o — § ‘. .
Al A o o ~| o ~lo o - < P : 4 Fetch operand from ADH, Data Load Data
0 o o — ] o 1o ©° i : ; memory ADL
| ~ o o — o — o © - i %
‘ a - - . : 5 Fetch next OP CODE 103 STA Increment P-counter
. E 4 from memory to 104, Perform ADC
. s 9 © ] o | ~ ol - - — . operation:
'{ : > o [S) o | o -~ - 3 A+M+C
R & £
e : 2 = o = G -1 - - 6 Fetch address from 104 ADL Increment P-counter
e o wl o o ol o PR — L memory to 105, Result of
2 B é Add -+ accumulator,
© H Interpret STA Instruc-
— - N
£l o o o ot o — |~ ; tion
;:‘ o o o o o — - —t H
—
3, o o ol e ik el - The above example shows the operation of an APC, add with carry in-
) ° o o |© e ~ struction, using absolute addressing. In the first cycle, the OP CODE is

fetched from memory addressed by the P-counter. To implement the
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look—ahead or pipeline in cycle two, the fetch of ADL address low is done
simultaneously with the interpretation of the ADC absolute instruction.

By the end of cycle 2, the microprocessor knows that it should access the

next memory location for the address high as a result of interpretationofj

the absolute addressing mode.
The address low (ADL) is stored in the ALU while the address high (
is being fetched in cycle 3.

On the fourth cycle, no internal operation is necessary while the

microprocessor is putting the calculated value onto the address bus. Howl:

ever, during this cycle, the operand is loaded into the microprocessor.

The four cycles have all been involved with memory access for the A

absolute instruction. The first to fetch the instruction, the second to

fetch the address low, the third to fetch the address high, and the fourth :

to use the‘calculated address to fetch the operand. Because that complety
the memory.operations for this instruction, during the fifth cycle the
microprocessor starts to fetch the next instruction from memory while it
is completing the add operation from the first instruction. During the
sixth cycle, the microprocessor is interpreting the new instruction fetch
during cycle 5 while transferring the result of the add operation to the
accumulator. This means that even though it really takes six cycles for
the nicroprocessor to do the ADC instruction, the programmer only need
corcern himself with the first four cycles, as the next two are over lappet
as shown.

All instructions tate at least two cycles:; one to fetcﬁ the OP CODE
and one to interpret the OP CODE and, with few exceptions, the number of
cycles that an instruction takes is equal to the number of times that

memory must be addressed.

The details of how each addressing mode is overlapped are described
in the individual sections, and for specific derails of each cycle dn varl
ous operations the user is referred ro the Hardware Manual, Appendix A.

Revised 2/79

5.2 MEMORY UTILIZATION

As indicated, the 16-bit address allows the user to access greater
than 65,000 separate locations. Most of the locations which will be ac-
cessed in the course of a control problem will be in program or P-counter
referenced locations. A typical program will probably range from 1000 to
8000 bytes and will normally be implemented in fixed ROM or non-volatile
alterable ROM.

A second type of memory will be the read-write memory in which the
user keeps data such as working values, input and output data. Depending
on the type of problem being addressed, this RAM usually ranges from 32
bytes to 8000 bytes, although most applications will be under 2000 bytes
of RAM.

It would seem there is significant address space not used in most
applications. To get the maximum benefit of the addressing space, two
concepts are implemented in the R6500 series. These are the use of data
addressing as 1/0 control, and distributed address connections for minimum
control lines. The latter concept utilizes the address bus, which is
basic to and therefore pervasive in any microcomputer system, as a con-
trolling network whenever possible. An example of this is the use of the

address bus in selecting devices to interface with the microprocessor.

5.2.1 I/0 Control

The advantages of accessing 1/0 as memory are 1) the use of
distributed address space allows for simple 1/0 control lines and 2)
all of the power of the instructions is applied to I/0 operations.
This has the advantage of minimizing 1/0 hardware and allows the pro-
grammer to be innovative in the application of I/0 devices in solving
his problem.

All R6500 product family I/0 devices contain 8-bit registers
which are addressed by the microprocessor as though they were a mem-
ory byte. In the simplest case, the 8-bit register being read con-
tains a 1's and O's pattern which corresponds to the TTL voltage.level

applied to eight input pins to the I/0 device.
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If the register were a flip-flop register driving eight output
pins with TTL levels, the storing of eight bits of data with a STA
{nstruction into that I/0 register would, in effect, be programming
the flip-flop to a specific desired state. Thus, one can use the in-

structions with the I/0 just as any other memory location.

5.2.2 Memory Allocation

Figure 5.1 displays the relationship between memory, address
bus and data bus while referencing the address values in hexadecimal
notation. The previous section has dealt with utilization of memory
address space for not only ROM and RAM but for 1/0 as well. At this
time, the concept of allocation of the memory field of Figure 5.1 to
the elements of ROM, RAM and I/0 will be considered. The allocation 4
below satisfies most applications requirements and represents only a

suggested allocation for minimization of programming code and speed.

Hexadecimal Address Suggested Allocation of Memory

0000 - 3FFF RAM
4000 - 7FFF 1/0 )
8000 - FFFF ROM

It should be noted that the three memory block address
definitions which, while not mandatory or required for proper system
operatioh, do represent a logical assignment of space. The choice
for this particular allocation will be presented in Section 9.12.

In the meantime, the reader should retain the concept of the various
memory blocks allocated to RAM, 1/0 and ROM as they are useful in the §

following discussion.

5.3 IMPLIIED ADDRESSING

e
Instructions which use implied addressing are single-byte instructions.:
The byte contains the OP CODE which stipulates an operation internal E
to the microprocessor. Instructions utilizing this type of addressing in-li
clude operations which clear and set bits in the P (Processor Status) reg-}

ister, incrementing and decrementing internal registers and transferring
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contents of one internal register to another internal register. Operations
of this form take two clock cycles to execute. The first cycle is the OP
CODE fetch and, during this fetch, the program counter increments.

In the second cycle, the incremented P-counter is mnow the address of
the next byte of the instruction. However, since the OP CODE totally de-
fines the operation, the second memory fetch 1is worthless and any P-counter
increment in the second cycle is suppressed. During the second cycle, the
OP CODE is decoded with recognition of its single-byte operation.

In the third cycle, the microprocessor repeats the same address to
fetch the next OP CODE. This 1s the second time the memory address is
fetched; once as the second byte of the first instruction and second, as
the correct OP CODE address for the next instruction.

A symbolic representation of a 2-cycle instruction is given below.

"p¢" means "Program Counter."

Example 5.3: Illustration of Implied Addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC + 1 PC +1 New Ignore New
OP CODE OP CODE;
Decode 01d
OP CODE
3 PC + 1 PC + 2 New Fetch New
OP CODE OP CODE;
Execute 0l1d
OP CODE

Instructions which use implied addressing and require only 2 cycles
include CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED, SEI,
TAX, TAY, TSX, TXA, TXS, and TYA.
Instructions utilizing implied addressing and which require more than
i 2 cycles are stack operations which include BRK, PHA, PHP, PLA, PLP, RTI, and




5.4 IMMEDIATE ADDRESSING Example 5.5: I1llustration of Absolute Addressing

Instructions which use immediate addressing are 2-bvte instructions.

Clock
The first byte contains the OP CODE specifying the operation and Cycle Address Bus Program Counter Data Bus Comments
i £ th g
address mode. The second byte contains a constant value defined by the } 1 pC PC + 1 P CODE Fetch OP CODE
programmer. It is often necessary to compare, load and/or test against : s PC 4 1 . PC + 2 ADL Fetch ADL,
certain known values. Rather than requiring the user to define and load Decode OP CODE
constants into some auxiliary RAM, the microprocessor allows the user to 3 PC + 2 PC + 3 ADH Fetch ADH,
specify constant values by the immediate addressing mode. Hold ADL
4 ADH, ADL PC + 3 Data Fetch Data
Example 5.4: Illustration of Immediate Addressing 5 PC + 3 PC + 4 New Feteh New
Clock OP CODE OP CODE,
oi Add B Program Counter Data Bu Comments Execute 01d
Cycle ress_Bus rogra n s op. CODE
1 PC PC + 1 OP CODE Fetch OP CODE The basic operation of the microprocessor in an Absolute address mode
2 PC + 1 PC + 2 Data Fetch Data,
Decode OP CODE is to read the OP CODE in the first cycle while finishing the previous
3 PC + 2 PC + 3 New Fetch New operation. In the second cycle, the microprocessor automatically reads
OP CODE OP CODE, the first byte after the OP CODE (in this case the address low) while
g;egggz old interpreting the operation code. At the end of this cycle, the microproces-

gor knows that it needs a second byte for program sequence; therefore, one

Immediate addressing is the simplest form of constant manipulation more byte will be accessed using the program counter while temporarily

available to the programmer. It requires a minimum execution time in the ' storing the address low. This occurs during the third cycle. 1In the

sense that one cycle is used in loading the OP CODE and as this CODE is be- fourth cycle, the operation is one of taking the address low and address

ing interpreted, the constant is being fetched. "high that were read during cycles 2 and 3 to address the operand. For ex-

Instructions utilizing immediate addressing are ADC, AND, CMP, CPX, ample, in load A, the effective address is used to fetch from memory the

CPY, EOR, LDA, LDX, LDY, ORA, and SBC. i " data which is going to be loaded in the accumulator. 1In the case of stor-

" ing, data is transferred from the accumulator to the addressed memory.

5.5 ABSOLUTE ADDRESSING As was illustrated in the review of pipelining, depending on the in-
M
" struction, it is possible for the microprocessor to start the next instruc-
Instructions which use absolute addressing are 3-byte instructions.
. . b tion fetch cycle after the effective address operation and independently of
The first byte contains the OP CODE for specifying the operation and b
e how many more internal cycles it may take to complete the OP CODE. The

address mode. The second byte contains the low-order byte of the effective

o only exception to this is the case of "Jump Absolute" in which the address
address (that address which contains the data), while the third byte con- 4

By ¥ low and address high that are fetched in cycle 2 and cycle 3 are used as
tains the high-order byte of the effective address. Thus, the programmer
the 16~bit address for the next OP CODE. The jump absolute therefore only
specifies the full 16-bit address and, since any memory location can be
. requires three cycles. 1In all other cases, absolute addressing takes four
specified, this is considered the most normal mode for addressing. Other
cycles, three to fetch the full instruction including the effective address,
modes may be considered special subsets of this 16-bit addressing mode.
the fourth to perform the memory transfer called for in the instruction.
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Absolute Addressing always takes three bytes of program memory; one
for the OP CODE, one for the address low, one for the address high.

Instructions which have absolute addressing capability include ADC,
AND, ASL, BIT, CMP, CPX, CcPY, DEC, EOR, INC, JMP, JSk, LDA, LDX, LDY, LSR,
ORA, ROL, ROR, SBC, STA, STX, and STY.

5.6 ZERO PAGE ADDRESSING

Instructions which use zero page addressing are 2-byte instructions.
The first byte contains the OP CODE, while the second byte contains the
effective address in page zero of memory.

As seen in absolute addressing, the ability to address anywhere in the
65K memory space costs three bytes of program space, plus a minimum of four
cycles to perform address operations. In order to allow the user to shorte
both memory space and execution time, particularly when dealing with
working registers and intermediate values, the R6500 System's microprocessor
family has a special addressing mode that automatically assumes the effect-
{ve address high (ADH) to be that of the lowest page of memory. In order o
understand the page concept one should think of each of the various memory
addresses as comprising a consecutive block of 256 locations which have an,
independent high-order address assoclated with that block. Each block is
called a page. Other than for zero page and for calculating indexed ad-
dresses which will be covered in the following sections, the microprocessor
pays little attention to the page concept. j

The microprocessor assumes that the high-order byte of the effective¥
address, for instructions which indicate the zero page addressing option, *
{s all O's (ADH = 00, hexadecimal). This allows the following sequence '

to occur:

Example 5.6: Illustration of Zero Pape Addrcssing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC+1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL, De-
code OP CODE
3 00, ADL PC + 2 Data Fetch Data
4 PC + 2 PC + 3 New Fetch New
OP CODE OP CODE, Exe-
cute 01d
OP CODE

On the first cycle, the microprocessor puts out the program counter,

reads the OP CODE and increments the program counter. On the

second cycle,

the microprocessor puts out the program counter, reads the effective ad-

dress low, interprets the OP CODE and increments the program counter. So

far, the operations are identical to those described in the absolute ad-

dressing mode. However, by the end of the second cycle, the microprocessor

,{ has decoded the fact that this is a zero page operation and on the next

" cycle, it outputs address 00, as the effective address high, along with

the address low that it just fetched, and then either reads or writes mem-

ory at that location, depending on the OP CODE.

The advantage of zero page addressing is that it takes only two bytes,

4

and four cycles.

Ir order to make most

the memory locations between 0 and 255.

.one for the OP CODE and one for the effective address low; and only three
j;cycles, one to fetch the OP CODE, one to fetch the address low, and one to

e
-ﬁfetch the data, as opposed to absolute addressing which takes three bytes

effective utilizatlon of this concept, the user

so that he is keeping his most frequently

1f one

memory properly, including moving data into

loops, significant shortening of program code

n":pace is made. If one's memory is organized according to the guidelines

; ?hown in Section 5.2.2, one normally will find working storage located in

values from O to 255.

This is an important aspect of the disc

i DT ——

ipline known



Once the pattern of coding for the R650¥ or R651X, which considers
working storage or registers in the zero page, becomes a habit, one finds
that in most control applications, all of the working registers will take
advantage of this programming and the associated time reduction without any
special effort on the user's part.

Instructions which allow zero page addressing include ADC., AND, ASL,
BIT, CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC,
STA, STX, and STY.

5.7 RELATIVE ADDRESSING

As discussed in Section 4.1, all of the branch operations in the micro-
processor use the concept of relative addressing. In example 5.7, it is
seen that for the case of the straightforward branch in which the branch
is not taken, on the first program count cycle, the microprocessor puts
out the program counter as an address, fetches the OP CODE and finishes the
previous operation. During the second cycle, the program counter is put
on the address bus, picking up the relative offset. Internally, the micro-
processor is decoding the OP CODE to determine that it is a branch instruc-

tion.

Example 5.7: Illustration of Relative Addressing: Branch Not Taken

External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous Oper-

OP CODE ation, Increment Pro-
gram Counter to 101

2 0101 Offset Fetch Interpret Instruc-
Offset tion, Increment Pro-
gram Counter to 102

3 0102 Next Fetch Next Check Flags, Increment
OP CODE OF CODE Program Counter to 010]

This is only the second cycle of an internal operation; therefore, the:
microprocessor may be storing a computed value from the previous instruc-
tion at the same time it is finishing interpreting the present Lnstructlom;
1t is while doing the store operation that the flags in the machine get ‘

physically set; therefore, the microprocessor allows the program counter
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to go one more cycle to allow itself time to determine the value of the
flags. For example, if the previous instruction is ADC, the flags will
not get set until the cycle in which the offset value is fetched.
During the third cycle, the microprocessor puts the incremented PC
onto the address bus, fetches the next OP CODE and checks the flag in
order to decide whether or not the program counter value that is going out
is correct and that the branch is not going to be taken. Therefore, an
additional type of pipeline, in this case fetching the next OP CODE in a
branch sequence, accomplishes the implementation of a branch relative with
no branch being taken. This requires two cycles. One cycle fe:ches the
branch OP CODE and one cycle fetches the next operation, the relative off-
set. The second fetch is effectively ignored by virtue of the fact that the
branch is not taken, so the program counter location has already been incre-
mented and the next OP CODE has already been fetched by the microprocessor.
If in the above example it 1s assumed that the flag is set such that
the branch is taken and the relative offset is +50, the microprocessor
takes a third cycle to perform the branch operation.

Example 5.8: Illustration of Relative Addressing; Rranch Positive
Taken, No Crossing of Pape Boundaries

External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous Oper-

OP CODE ation, Increment Pro-
gram Counter to 101

2 0101 +50 Fetch Interpret Instruction,
Offset Increment Program
Counter to 102
3 0102 Next Fetch Next Check Flags, Add Rela~-
OP CODE OP CODE tive to PCL, Increment
Program Counter to 103
4 0152 Next Fetch Next Transfer Results to
OP CODE OP CODE PCL, Increment Program

Counter to 153

In Example 5.8, on the first cycle, a branch OP CODE is fetched while
the previous operation is finished. On the second cycle, the offset is
fetched while the branch instruction is being interpreted. On the third

cycle, the microprocessor uses the adder to add the program count low to




the offset and also checks the flags. Because the program count for the

being incremented, the microprocessor can allow the incrementation process
%

to continue. If the value for the next instruction is indicated because

the flag is not set; then the microprocessor loads the next OP CODE and

the add of the jprogram counter low to the offset value, is ignored as it

|
I

was in the previous example.

If during the third cycle the flag is found to be the correct value

ignored. The microprocessor then updates the program counter with the

B results from the add operation, puts that value out on the address bus

which fetches a new OP CODE.

- This gives the effect of a 3-cycle branch. Thus it can be seen that
tive 2-cycle branch, i.e., two memory references. In the case when the

‘branch is taken, the branch takes three cycles as long as the relative value

v does not force an update to the projram counter hieh. In other words,

. three cycles are required if the page boundary is not crossed (recall the ?*
4

discussion of the 'page" concept in Section 5.0). I1f in the above example

fthe branch was back from address 0102 fifty locations, as opposed to-+50

\
E
)
!

locations, the following result would occur: f
Example 5.9: 1Illustration of Relative Addressing: Branch Negative i
Taken, Crossing of Page Boundary &
t
External Internal ?
Cycle Address Bus Data Bus Operations Operations ?
) 1 0100 OP CODE Fetch Finish Previous
- OP CODE Instruction ;
! 2 0101 -50 Fetch Interpret Instruc-
Of fset tion K
[
3 0102 Next Fetch Next Check Flags X
OP CODE oP COobE Add Relative to
PCL
4 01B2 Discarded Fetch Dis-  Store Adder in PCL
Data carded Data and Subtract 1 g
from PCH A
5 0082 Next Fetch Next Put Out New PCH i
OP CODE 0P CODE and Increment PC
to 00B3 H
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next OP CODE in program sequence 1s already in the program counter and is ks

for a branch, the OP CODE that has been fetched during this cycle is ﬂ-;

2 in a case where the branch is not taken, the microprocessor has an effec- '

In this example, the adder is used to perform the arithmetic opera-
tion, and the adder can do only the eight bits of addition at a time. The
minus branch crosses back over the page boundary, therefore an intermediate
result is developed of 01B2 which has no intrinsic value because of the
borrow which now has to be reflected into the program counter high. Since
this example displays both a negative offset and the crossing of a page
boundary, additional explanation is in order.

The value to which the offset will be added is 0102 (hexadecimal).

The offset itself is -50 (hexadecimal}.

Subtract low-order byte:

OZHEX = 0000 0010

SOHEX = 0101 0000

Take two's complement of 50:

50 = 1010 1111
Add 1 1
-50 = 1011 0000

Add 02 0000 0010
-50 1011 0000

Carry = /O/ 1011 0010
B 2

Up to this point, the PCH has not been affected; therefore the value
on the address bus is 01B2.
The Carry = 0, indicating a borrow.

Subtract high-order byte:

01HEx = 0000 0001

OOHEX = 0000 0000

Take two's complement of 00:
00HEx = 1111 1111
Add Carry = 0
_OOHEX = 1111 1111

Add 01 0000 0001
-00 1111 1111

Carry = /1] 0000 0000
0 o

The presence of the Carry indicates no borrow, hence a
positive result.
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At this time, after the arithmetic operation on both bytes of the P.C.,
The execution time is as follows:

the address bus will be: 00B2.

The microprocessor does put out on the address line the intermediate Branch with Not Taking the Branch -- 2 cycles

results (01B2), thereby reading a location within the page it was curreatly i Branch When the Branch Is Taken But __ 5 . j.q
: No Page Crossing y

working in, the value of which is ignored. It then subtracts 1, or if this
Branch When the Branch Is Taken with __

was a branch forward to the next page, the microprocessor would add 1 to . a Page Crossing 4 cycles

program counter high in this fourth cycle. 1In the fifth cycle, the micro-
Only branch instructions have relative addressing. The branch instruc-

processor will recognize that it has the correct new program counter high
tions are: BCC, BEQ, BMI, BNE, BPL, BCS, BVC, BVS. For a more detatiled

and program counter low and is able to start a new instruction operation,
explanation of relative offset calculations the reader is referred to

thereby giving an effective length to the branch operation when a page ;

Appendix H.

crossing is encountered of four cycles.

We can see that it 1s possible to control the execution time of a
branch. This is important for counting or estimating execution times of
operations. For counting purposes, the following applies:

1f a branch is normally not taken, assume two cycles for the branch.

| If the branch is normally taken but it is not across the page boundary,
assume three cycles for the branch.

1
; 1f the branch is over a page boundary, then assume four cycles for the
S branch.

In loops which are repeated many times, ome can assume some type of
: statistical factor between 3 and 2, or 4 and 2, depending on the proba-
. bility cf taking the branch versus not taking it.

It should be re-emphasized that other than for timing purposes, page
boundary crossinés can be ignored by the programmer.

To summarize, the relative addressing always takes two bytes, one for

the OP CODE and one for the offset.




E CHAPTER 6

INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

6.0 GENERAL CONCEPT OF INDEXING

In previous sections techniques for using the program counter to
address memory locations after the operation code to develop the address
for a particular operation have been discussed. Other than cases when
the programmer directly changes the program memory, it can be considered
that the addressing modes discussed up until now are fixed or direct
addresses and each has the relative merits discussed under each individual
section. However, a more powerful concept of addressing is that of
computed addressing. There are basically two types of computed address-

. B 4 ing; indexed addressing and indirect addressing.

Indexed addressing uses an address which is computed by means of

modifying the address data accessed by the program counter with an

internal register called an index register.

Indirect addressing uses a computed and stored address which is

accessed by an indirect pointer in the programming sequence.

In the R6500 product family, both of these modes are used and

combinations of them are available.

Before undertaking the more difficult concepts of indirect address-

ing the concept of indexed addressing will be developed.
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_#52, d e et

In order to move five bytes of memory from a starting address of

FIELD | to another set of addresses, starting with FIELD 2, the following
The Zero Page program would execute in three cycles per in-

program could belwritten:
' struction or a total of 30 cycles, and the Absolute location version would

Example 6.1: Moving Five Bytes of Data With Straight Line Code execute in four cycles per instruction or a total of 40 cycles.

LABEL INSTRUCTION OPERAND COMMENTS i

START LDA FIELD 1 :::::::: Move First Value i A new concept has been introduced in this example, that of symbolic
STA FIELD 2 f ;, notation rather than actual locations for the instructions.
LDA FIELD 1 + 1 :; Move Second Value i
STA FIELD 2 + 1 i
LDA FIELD 1 + 2 > Move Third Value i The form in which this short program is written uses symbolic
STA FIELD 2 + 2 g
LDA FIELD 1 + 3 Move Fourth Value % 3 addressing in which the address of the beginning of the program has the
STA FIELD 2 + 3 :::::::: i : name, "START'. Symbolic representations of addresses such as "START" are
LDA FIELD 1 + 4 Move Fifth Value .
STA FIELD 2 + & i referred to as labels. The addresses in the two address fields used in

. . this example have also been given names: The first address of the
In this example, data are fetched from the first memory location in
. | . first field is called FIELD 1; and the first address of the second field is
FIELD 1, as addressed by the next one or two bytes in program memory, 5 3
1 he fi 1 ei called FIELD 2. Each additional address in the fields has been given
ily in A and then written into the rst memory location
stored temporarily in a number which is referenced to the first number; for example, the address
1 dd d by the next one or two bytes in program memory.
in FIELD 2, also addresse Y " Y prog 1 2 of the third byte in the first field is FIELD 1 + 2. All of these concepts
i ted ith only the memory addresses changing, unti
. This sequence 1s repeated, w y y Bing, . are implemented to simplify thc ease of writing a program because the user
: 1 the data have been transferred. This type of programming is called -
i all the data v P prog & g does not have to worry about the locations of FIELD 1 and FIELD 2 until
“straight line" programming becasue each repetitive operation is a sepa- A

after analyzing the memory needs of the whole program. Symbolic notation

of ructions listed in sequence or straight line form in
rate group instruction d & also results in a more readable program.

program memory. This is necessary even though the instruction OP CODES -

iﬁ ical for h ry transfer operation because the specific
! are identical for each memory P P . Translation from symbolic form instructions and addresses inte
! ddresses are different and require a different code to be writ-

H memory a € q actual numerical OP CODES and addresses is accomplished by a program

i i the program memory for each transfer. N

ii‘ ten into prog y . EN called a symbolic assembler. Several different versions of symbolic

assemblers are available for the R6500 product family, Symbolic nota-
It takes a total of 10 instructions to accomplish the move when it

4 tion will be employed throughout the remainder of this text because of
ed is way. It should be noted that it is not indicate

is implemented this way its ease of understanding, and because individual byte addresses are
whether or not FIELD 1 and FIELD 2 are Zero Page addresses or Absolute

unnecessary, although for an explanation of a particular mode the byte
addresses.
representation may be used.

If they were Zero Page addresses, the total number of bytes con- .
In this example, only direct addresses were used. A program to
sumed in solving the problem would be two bytes for each instruction,
reduce the number of bytes required to move the five values follows:
thereby requiring 20 bytes of memory; if both FIELD 1 and FLELD 2

were Absolute memory locations, each instruction would take three bytes

and this program would require 30 bytes of program storage.

6-2 N 6-3




—— Move FIELD 1 to FIELD 2

Assuming Zero Page, direct addressing, Example 6.3 is written

below with one byte per line just as it would appear in program memory.

This will provide a more detailed description of Example 6.2.

‘ Add 1 to FIELD 1 Address

Example 6.3: Coded Detail of Moving Fields With Loop

3
k
¥
[7Add 1 to FIELD 2 Address | PO ‘
Iy | LABEL CODE NAMES COMMENTS
Y INIT CcLC Clear Carry
;‘? ' START LDA (FIELD 1)-»A
L FIELD 1
No Is FIELD 2 Address =End of FIELD2 5 3 OTHER STA A—» (FIELD 2)
? ! FIELD 2
‘ B LDA From Address—@w» A
Yes . ] START + 1
Done . A ADC A+ 1A
. 1
g STA A—3» From Address
Moving Five Bytes of Data with Loop 4 START + 1
' LDA To Address—pm A
: FIGURE 6.1 i - OTHER + 1
‘ e | ADC A+ 1A
[y g 1
H g 3 STA A®To Address
t j OTHER + 1
3
it Example 6.2 is a program listing that corresponds to the flow chart: CMP A - ORIGINAL FIELD 2 + 5
i K ORIGINAL FIELD 2 + 5
e Example 6.2: Moving Five Bytes of Data With Loop & BNE If not, loop to START
% START
LABEL INSTRUCTION OPERAND COMMENTS ,
INIT CLC - In this example, the program is modifying the addresses of one
START LDA FIELD 1 g 1
OTHER STA FIELD 2 Move Loop : load instruction and one store instruction rather than writing 10 in-
kné 3IART +1 structions to move five bytes of data and 50 instructions to move
D
STA START + 1 25 bytes of data.
kgé 3{HER +1 Modify Move Values The address of the Load A instruction is located in memory at
STA OTHER + 1 START +1, and the Store instruction at OTHER + 1. 1In order to perform
CMP #fFIELD 2 + 5 Check for End

this operation, the address must be modified once for each move opera-
BNE START
tion until all of the data are moved.

; F f ding, labels h been written in the form
NOTE or ease of reading, labels have B¢ Checking for the end of the moves is accomplished by checking the

"FIELD 1". This is i r t format for use in the various
EL s 1s incorrec ° results of the address modification to determine if the address exceeds

bolic assemblers. "FIELD 1" must be written "FIELD1"
sym the end of the second field. When it does so, the routine is complete.

when coding for assembler formats.




If 100 values were to be moved this program would remain 20 bytes
long, whereas the solution to the first problem would require a program

of 200 inmstructions. 2. Although this is the simplest form of computed addressing,

fewer program bytes would be necessary with the more sophisti-

The type of coding used in this example is called a "loop." cated form of program shown in the following flow chart.

Although the program loop in this case requires as many bytes as the

original program, more values could be moved without increasing the

length of. the program. The greater the number of repetitive operations i I CLEAR COUNTER I

that are to be accomplished, the greater the advantage of the loop A ‘

type program over straight line programming. i ) I FETGH FIELD 1 + COUNTER
Important Note: The execution time required to move the five b 3 +

values is significantly longer using the loop program than the straight ﬁ ; | STORE FIELD 2 + COUNTER

line program. In the straight line program, if a Zero Page operation ,} : +

is assumed, the time to perform the total move is 30 cycles. Using

I ADD 1 TO COUNTER

the loop program, the execution time to move five values is five times

through the entire loop, which takes 25 cycles. " Therefore the time

to move five values is 125 cycles. A

While loops have an advantage in coding space efficiency, all loops il

cost time. If the programmer has a problem that is extremely time-

dependent, taking the loop out and going to straight line programming,

EQUAL

even though it is extremely inefficient in terms of its utilization of
memory, will often solve the timing problem. FINISH
The straight line programming technique becomes very useful in some Moving Five Bytes of Data with Counter

control applications. However, it is not recommended as a standard FIGURE 6.2

technique, but should be used only when there are extreme timing problems.
Loops will normally save a significant number of bytes but they will

always take more time.

i In the R6500 System's microprocessor family, the counter is called an
The technique used in the loop program example has two major lq ~§%imdex register. It is an 8-bit register which is loaded from memory and
problems: ‘? ¢ has the ability to have 1 added to it by an increment instruction (INX,INY)
}:aand can be compared directly to memory using the compare index instruction
L. The nkcessity to modify program memory. This should be Q(CPX,CPY). Example 6.4 shows the program listing for the flow chart of

¥ fFigure 6.2.
into read-only memory with the corresponding savings in (8. ﬂ

4

avoided to take advantage of the ability to put programs

hardware costs.
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Example 6.4: Moving Five Bytes of Data With Index Register

BYTES LABEL INSTRUCTION OPERAND COMMENTS
2 LDX 0 Load Index With Zero JE
3 LOOP LDA F1ELD 1,X ]
3 STA FIELD 2,X
1 INX Increment Count
2 CPX 5 Compare For End

2 BNE LOOP

13 for Absolute

In this example, index register X is used as an index and as a
counter. It is initialized to zero. Data are fetched from memory at
the address "FIELD 1 plus the value of register X", and placed in A.
The data are then written from A to memory at the address “FIELD 2 plus
the value of register X." Register X is incremented by 1 and compared
with five in order to determine if all five data values have been
transferred. If not the program loops back to LOOP. In this example,
"FIELD 1" is called the "Base Address' which is the address to which

indexing 1is referenced.

This only takes 11 or 13 bytes, depending on whether or not the
field is in Page Zero or in absolute memory. It still requires 13 or 15
cycles per byte moved, again confirming that loops are excellent for

coding space but not for execution time.

It can be seen from the example that there are basically two
criteria for an index register: 1) that it be a register which is
easily incremented, compared, loaded, and stored; and 2) that in a

single instruction one can specify both the Base Address and the index

register to be used.

In a R6500-series microprocessor, the indexed instruction 1s sym-
bolically represented by "OP CODE Address, X." This indicates to the
symbolic assembler that an instruction OP CODE should be picked, which
should specify either the absolute address modified by the content of
index X register or Zero Page address modified by the content of index

X register.

6-8

In performing these operations, the microprocessor fetches the
instruction OP CODE as previously defined, and fetches the address,
modifies the address from the memory by adding the index register to

it prior to loading or storing the value of memory.

The index register is a counter. As discussed previously, one
of the advantages of the flags in the microprocessor is that a value
can be modified and‘its results tested. Assume that the last example is
modified so that instead of moving the first value in FIELD 1 to the
first value in FIELD 2, the last value in FIELD 1 is moved first to the
last value in FIELD 2, then the next to the last value, etc. and finally
the first value. With the index register preloaded with five and using
a decrement instruction, the contents of the index register would end
at zero after the five fields of data were transferred. The zero
indicates that the number of times through the loop is correct and
the loop exited by use of the zero test. The program listing for
this modification is shown in Example 6.5:

Example 6.5: Moving Five Bytes of Data by Decrementing the Index

Register
LABEL INSTRUCTION OPERAND
LDX 5
LooP LDA FIELD 1-1,X
STA FIELD 2-1,X
DEX
BNE LOGP

In this example, Index Register X 1s again used as an Address
Counter but it will count backwards. It is initialized to five for
this example. Data are fetched from memory at the address "FIELD 1-1 plus
the value of Register X" and placed in A. The data are then written
from A to memory at the address "FIELD 2-1 plus the value of Register X."
Register X i{s decremented by one. If the decremented value is not zero,

as determined by a Branch on Zero iastruction, the program loops back
to LOOP.

The loop has been decreased to 9 or 11 bytes, and the execution

time per byte has been decreased from 15 cycles to 13 cycles per value
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Because of OP CODE limitations, X and Y have slightly different
which shows the advantage of using the flag setting of the decrement applications. X is a little more flexible because it has Zero Page
index instruction. | - operations which Y does not have with exception of LDX and STX. Aside

from which modes they modify, the registers are autonomous, independent
The two index registers, X and Y, can now be added to the - and of equal value.

system block diagram as in Figure 6.3.

6.1 ABSOLUTL INDEXED

Absolute indexed address is effective addressing with an index

register added to the absolute base address. The sequences that occur

C DATA BUS ] -

i;47 3 for absolute indexed addressing without page crossing are as follows:

PCL PCH P )
l ] ; Example 6.6: Absolute Indexed; with No Page Crossing
INTERNAL abL ] E 2 Address Data External Internal
] 2 Cycle Bus Bus Operation Operation
INTERNAL __ ADH ] -
3 1 0100 OP CODE Fetch OP CODE Increment PC to 101,
A ] | Finish Previous |
A4 P 5 Instruction |
MEMORY x 2 0101 BAL Fetch BAL Increment PC to 102,

Interpret In-
struction

INDEX INDEX
Y X

-

- 3 0102 BAH Fetch BAH Increment PC to 103,
Calculate BAL + X

Partial Block Diagram of a R6500 Microcomputer System Microprocessor Including Index Registers

4 BAH,BAL+X OPERAND Put Out
FIGURE 6.3 R Effective
N Address
; 5 103 Next OP Fetch Next Finish Operations ;
CODE OP CODE ’

BAL and BAH refer to the low- and high-order bytes of the base address,
respectively. While the index X was used in Example 6.7, the index Y

i 11 licable.
Each of the index registers is 8 bits long and is loaded and stored § equatly applicable

t
from memory, using techniques similar to the accumulator. Because of this

1 i sse ts of t +
ability, the registers can be considered as auxiliary channels to flow data fa page is not crossed, the results of the address low + X does

. ; . . ; ©' not cause a carry. The processor is able to pipeline the addition of the ;
through the microprocessor. However, their primary use is in being ,

t ~ i i bs
added to addresses fetched from memory to form a modified effective ‘f8 bit index register to the lquer byte of the base address (BAL) and not

) © suf . . .
address, as described previously. Both index registers have the ability “su fer any time degradation for absolute indexed addressing over straight

absolute addressing. I t d hil AH is bei fet d
to be compared to memory (CPX,CPY) and to be incremented (INX,INY) and solute addressing 0 other words, while B s being fetched, the

g " add of X to BAL occurs. Both addressing modes require four cycles, with
decremented (DEX,DEY). -
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the only difference being that X or Y must be set at a known value this page crossing occurs independently of programmer acti d
on an

and the OP CODE must indicate an index X or Y. there is no penalty in memory for having crossed the page bound
cundary.

It
is possible for the programmer to predict a page crossing by
k
nowing the value of the base address and the maximum offset val
ue

to the address low of the base address that the resultant address is . in the index register. 1If timing is of concern the ba dd
i ’ se address

: can be adjusted so that the address field is always in one pag
e,

The second possibility is that when the index register is added

in the next page. This is illustrated in Example 6.7.

Example 6.7: Absolute Indexed; with Page Crossing 1 As with absolute addressing, absolute indexed i tt
K 5 e most
S general for i i X
Address Data External Internal R m of indexing. It is possible to do absolute indexed
Cycle Bus Bus Operation Operation ‘@ vodified by X, and absolute indexed modified by Y. 1
B — . nstructions
which allow absolute i
ndexed by X are AD

1 0100 0P CODE Fetch OP CODE  Finish Previous B :, o, oa Loy y e ADC, AND, ASL, CMP, DEC,

Operation Increment ¥ ’ ’ > » LSR, ORA, ROL, ROR, SBC, and STA.

PC to 101 E 3

- ¥ Tt

2 0101 BAL Fetch BAL Interpret Instruction - he instructions which allow indexed absolute by Y are ADC,

Increment PC to 102 = AND CMP, EOR, LDA, LDX, ORA, SBC, and STA

L , .

3 0102 BAH Fetch BAH Add BAL + Index

Increment PC to 103

62 ZE 5 :
4 BAH,BAL  Data Fetch Data Add BAH + Carry X RO PAGE INDEXED
+X (Ignore) (Data is i
) : A i -
- ignored) o s with non-computed addressing, there is a memory use advantage

to’ -
I the short-cut of zero page addressing. Except in LDX and STX

5 BAH+1, Data Fetch Data R instructions which can b i
BALAX .Odifi i e modified by Y, Zero Page is only available
ed by X. If the base address plus X exceeds the value that
‘Cl !
6 0103 Next OP Fetch Next Finish Operation o be stored in a single byte, no carry is generated; therefore ;
CODE QP CODE there is no page crossing phenomenon

A wrap-around will oceur within

Pl e Z
8e Zero. The following example illustrates the internal operations

The most substantial difference between the page crossing operation °t Zero Page indexing.

and no page crossing is that, during the fourth cycle, the address

high and the calculated address low are put out, thereby incorrectly

addressing the same page as the base address. This operation is carried o
on in parallel with the adding of the carry to the address high. During ;

the fourth cycle the address high plus the carry from the adder are put

on the address bus, moving the operation to the next page. Thus, there
are two effects from the page crossing: the first effect is the address-:
ing of a false address; this is similar to what happens in a branch rela-;
tive during a page crossing. Secondly, the operation takes an adstlonaL
cycle while the new address high is calculated. As with the branch relat i
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i e e e e

Example 6.8: Illustration of Zero Page Indexing 3 Example 6.9:  Demonstrating the Wrap-Around
Address Data External Internal i Cycle
Cycle Bus Bus Operation Operation zyele Address Bus Internal Operation
1 0100 OP CODE Fetch OP CODE Finish Previous 2 00F7 F7 + 10
Operation, 0LUL + P 0007
2 010% BAL Fetch Base Interpret Instruct-
J Address Low ion, 0102 + PC This indicates the wrap-around effect that occurs with Zero Page
(BAL) i
ndexing with page crossing This wrap- ;
: . p~-arcund does not
3 00, BAL Data Fetch Add: BAL + X : 1 ) increase the
(Dis— Discarded g ovce time over that shown in the previous example.
carded Data d
3 0 i : :

4 00, BAL pata Fetch Data nly index X is allowed as a modifier in Zero Page. Instructions

+X ik which have this feature include ADC, AND, ASL, CMP, DEC, EOR, INC, LDA

, EOR, s )
LDY
5 0102 Next OF Fetch Next OP Finish Operation » LSR, ORA, ROL, ROR, SBC, STA and STY, Note that index Y is allowed
CODE CODE in the instructions LDX and STX.

As can be seen from the example, Zero Page indexing offers no
time savings over absolute indexing without page crossing. In the case
of the indexed absolute, auring cycle 3 the address high is being
fetched at the same time as the addition of the index to address low.
In the case of the Zero Page, there is no opportunity for this type of

overlap; therefore, indexed Zero Page instructions take one cycle longer

than non-indexed instructions.

In both Zero Page indexed and absolute indexed with a page crossing,

there are incorrect addresses calculated. Provisions have been made to

make certain that only a READ operation occurs during this time. Memory

modifying operations such as STORE, SHIFT, ROTATE, etc. have all been
delayed until the correct address is available, thereby prohibiting any

possibility of writing data in an incorrect location and destroying

the previous data in that location.

As has been previously stated, there is no carry out of the Zero

Page operation. 00 is forced into address high under all circumstances

in cycle 4. For example, if the index register containing a value

of 10 is to be added to base address containing a value of F7, the

following operation would occur:

6.3 INDIRECT ADDRESSING

In solving a certain class of problems, 1t is sometimes necessary
to have an address which is a truly computed value, not just a base
address with some type of offset, but a value which is calculated or
sometimes obtained as a group of addresses. In order to implement
. this type of indexing or addressing, the use of indirect addressing

has been introduced.

In the R6500-series microprocessors, indirect operations have a
special form. The basic form of the indirect addressing is that of an
" Instruction consisting of an OP CODE followed by a Zero Page address. The
microprocessor obtains the effective address by picking up from the Zero

ki Page address the effective address of the operation. The indirect

addressing operation is much the same as absolute addressing, except that
indirect addressing uses a Zero Page addressing operation to

dlccess the effective address. In the case of absolute

addressing, the value in the program counter is used as the address to

pick up the effective address low, and one is added to the program counter

vhich is used to pick up the effective address high. In the case

of indirect addressing, the next value after the OP CODE, as addressed

. 'Vith the program counter, is used as a pointer to address the effective
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address low in the zero page. The pointer is then incremented by

one with the effective address high fetched from the next memory

location. The next cycle places the effective address high (ADH) and

effective address low (ADL) on the address bus to fetch the data.

An illustration of this is shown in Figure 6.4.

0101 IAL

00,
IAL ADL

00,1141

Indirect Addressing—Pictorial Drawing
FIGURE 6.4

The address following the imstruction is really the address of an

address, or "indirect" address. The indirect address is represented

by TIAL in the figure.

A more detailed definition of indirect addressing is included in

the appendix.

Although the R6500 System's microprocessor family has indirect
operations, it has no simple indirect addressing, except for JMP 1instruc~
tions, such as described above. Instead, there are two modes of indirecct
addressing: 1) indexed indirect and 2) indirect indexed. The two modes

are discussed in Sections 6.4 and 6.5, respectively.

6.4 INDEXED INDIRECT ADDRESSING

The major use of indexed indirect is in picking up data from a
table or list of addresses to perform an operation. Examples where
indexed indirect is applicable are found in polling I/0 devices or in
performing string or multiple-string operations. Indexed indirect
addressing uses the index register X. Instead of performing the 1indi-
rect as shown in Figure 6.4, the index register X is added to the Zero
Page address, thereby allowing varying address for the indirect pointer.
The operation and timing of the indexed indirect addressing is depicted
in Figure 6.5.

0100 OP CODE

0101 IAL

ADH 1

it Lot 1]
ADL1 DATA 1

00, IAL+2 ADL 2
00, IAL+X <]

ADH 2

00, IAL+4 ADL 3

ADH 3
\

Indexed Indirect Addressing
FIGURE 6.5

ADH3,
ADL3 DATA 3

ADH2,
.

6-17




Example 6.10: Tllustration of Indexed Indirect Addressing | Instructions which allow the use of indexed indirect are ADC, AND
» »

CMP, EOR, LDA, ORA, SBC, and STA.

Address Data External Internal
Cycle Bus Bus Operation Operation
6.5 INDIRECT INDEXED ADDRISSING
1 0100 OP CODE Fetch OP CODE Finish Previous
Operation, 0101 - PC The indirect indexed instruction combines a feature of indirect
2 0101 BAL Fetch BAL Iaterpret In- b addressing and a capability of indexing. The usefulness of this in-
struction, 0102 - PC struction is primarily for those operations in which one of several

[P S

; 20.5AL DATA (Dis- Fetch Discard- Add BAL + X values could be used as part of a subroutine. By having an indirect
carded) ed DATA pointer to the base operation and by using the index register Y in
. 00,5AL DL Feteh ADL Add 1 to BAL + X ; the normal counter type form, one can have the advantages of an
P k1 address that points anywhere in memory, combined with the advantages
) 00.5AL KDH Fetcn  ADH Hold ADL 3 of the counter offset capability of the index register.
+X+1 4
| E Figure 6.6 illustrates the indirect indexed concept in flow form
6 ADH,ADL DATA Fetch DATA : ? while Example 6.11 indicates the internal operation of a non-page roll-
) o102 Cexe op Feteh Next OP Finish Operation over of an indirect index.
CODE 0103 » PC =
One of the advantages of this type of indexing is that a 16-bit :3 3
< 0100 | OP CODE

address can be fetched with only two bytes of meﬁory, the byte that
contains the OP CODE and the byte that contains the indirect pointer. s 0101 IAL

It does require, however, that there be a table of addresses kept in

a read/write memory which is more expensive than having it in read- 3 00, 1AL BAL

only memory. Therefore, this approach is normally reserved for appli-

cations where use of indexed indirect results in significant coding E 3 00, IAL+1 BAH
improvement or where the address being fetched is a variable computed . '

address. ZQS,
It is also obvious from the example that the user pays a minor time BAH, BAL+Y BAH,
penalty for this form of addressing in that indexed indirect always takes i (ADM, ADL) oL i
six cycles to fetch a single operand, which is 25% more than an absolute 1 223;2 :
address and 50% more than a Zero Page reference to an operand. As in ;
the Zero Page indexed, the operation in cycles three and four are o j
i located in Zero Page and there is no ability to carry over into the next ? Indirect Indexed Addressing j
vy, page. It is possible to develop a value of the index plus the base : FIGURE 6.6
i: address where the result exceeds 255; in this case, the address put out | )
Ei is a wrap-around to the low part of the Page Zero. i

. |
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Example 6.11: Indirect Indexed Addressing (No Page Crossing) i Example 6.12: Indirect Indexed
i 3

Addressing (With

Page Crossing)

Address  Data External Internal Address Data External Internal
Cycle Bus Bus Operation Operation Cycle Bus Bus Operation Operation
i ] 1 0100 OP CODE Load OP CODE Finish Previous
100 OP CODE Fetch OP CODE Finish Previous 3
1 010 Operation, 0101 -~ PCEE Operation, 0101 -» PC
IAL Fetch IAL Interpret In- - 2 0101 IAL Fetch IAL Interpret In-
2 oio struction, 0102 +FC struction, 0102 + PC
3 00, IAL BAL Fetch BAL Add 1 to IAL 3 3 00,IAL BAL Fetch BAL Add 1 to IAL
> E.
4 00,IAL  BAH Fetch BAH Add BAL + Y | & 4 00,IAL BAH Fetch BAH Add BAL to Y
+1 [ +1
AH,BAL DATA (Dis- Fetch DATA Add 1 to BAH
BAH,BAL  DATA Fetch Operand 5 BAH,
5 v ; +Y carded) (Discarded)
6 0102 Next OP Fetch Next OP Finish Operation A 6 BAH + 1 DATA Fetch Data
CODE CODE 0103 » PC E 3 BAL + Y
7 0102 Next OP Fetch Next OP Finish This
CODE CODE Operation,
0103 + PC
When there is a page crossing, the base address high and base
; address low plus Y are pointing to an incorrect location within a
g
The indirect index still requires two bytes of program storage -- one fi§ referenced page. However, it should be noted that the programmer has
for the OP CODE, one for the indirect pointer. Once beyond the indirect, EJ 3 control of this incorrect reference in the sense that it is always
> : 3
the indexing of the indirect memory location is just the same as though [ pointing to the page of the base address. In one more cycle the correct

it were an absolute indexed operation, in the sense that if there is no /S address is referenced. As was true in the case of absolute indexed,

page crossing, pipelining occurs in the adding of the index register Y to
address low while fetching address high, and, therefore, the non-page
crossing solution is one cycle shorter than the indexed indirect. In ‘Q
Example 6.12 it 1s seen that the page crossing problem that occurs with

absolute indexed page crossing also occurs with indirect indexed address-

ing.

CMP, EOR, LDA, ORA, SBC, and STA.

the data at the incorrect address is only read.

will never be written into with incorrect data.

STA and the various
read, modify, and write memory commands all operate assuming that there
will be a page crossing; take the extra cycle time to perform the add
and carry; and perform a write only on the sixth cycle, rather than
taking advantage of the five-cycle short-cut which is available to

read operations. This added cycle guarantees that a memory location

Instructions which allow the use of indexed indirect are ADC, AND,




In the following two examples a comparison can be seen between
the use of absolute modified by Y and indirect indexed addressing.

In both examples, the same function is performed. Values from
two memory locations are added, and the result is stored in a third
memory locatiJn, assuming that there are several values to be added.
The first example deals with known field locations. The second
example, such as might be traditionally used in subroutines, deals
with field locations that vary between routines. A two-byte pointer
for each routine using the subroutine is stored in Page Zero. The
number of values to be added for each routine is also stored.

Example 6.13: Absolute Indexed Add -— Sample Program

]
¥

&
f

#Bytes Cycles Label Iustruction Comment s
v
2 2 START LDY #COUNT -1 Set Y = End of FIELD
3 4 LOOP LDA FIELD 1,Y Load Location 1
3 4 ADC FIELD 2,Y Add Location 2
3 4 STA FIELD 3,Y Store in Location 3
1 2 DEY
2 3 BPL LOOP Check for Less Than .
14 19 Time for 10 Bytes = 171 Cycles

Example 6.14: Indirect Indexed Add -- Sample Program

i

fiBytes Cycles Label Instruction Comments
2 2 START LDY /COUNT -1 Set Y = End of FIELD &
2 5 LOOP LDA (PNT1), Y Load FIELD 1 Value @
2 5 ADC (PNT2), Y Add FIELD Z\Value
2 5 STA (PNT3), Y Store FIELD 3 Value
1 2 DEY
2 3 BPL LOOP
11 22 Time for 10 Bytes = 201 Cycles

+ 6 Bytes for Pointers

S

[

The "count" term in these examples reprzients the number of sets
of values to be added and stored. Loading the index register with
COUNT-1 will allow a fall through the BPL instruction when computation

on all set of values has been completed.

There is a definite saving in program storage using indirect be-
cause it requires only two bytes for each indirect pointer, the OP CODE
plus the pointer of the Page Zero location, whereas in the case of the
absolute, it takes three bytes, the OP CODE, address low and address

high.

1t is to be noted that there are six bytes of Page Zero memory used
for pointers, two bytes for each pointer. The number of memory locations
allocated to the problem are 17 for the indirect and 14 for the problem
where the values are known. The execution time is longer in the in-
direct loop. Even though the increase in time for a single pass
through the loop is only three cycles, if many values are to be trans-
ferred, it adds up. It is important to note that loops require time
for setup but this time is consumed only once. In the loop itself,
however, additional time is multiplied by the number of times the pro-
gram goes through the loop; therefore, on problems where execution time

is important, the time reduction effort should be placed on the loop.

Even though the loop time is longer and the actual memory expended
is greater for the indexed indirect add, it has the advantage of not
requiring determination of the locations of FIELD !, FIELD 2, and FIELD

3 at the time the program was written as is necessary with absolute.

An attempt to define problems to take advantage of this shorter
memory and execution time by defining fields should be investigated
first. However, in almost every program, the same operation must be
performed several times. In those cases, it is sometimes more useful
to define a subroutine, and to set the values that the subroutine will
operate on as fields in memory. Pointers to these fields are placed
in the Zero Page of memory, and then the indexed indirect operation is

used to perform the function. This is the primary application of the

indexed Indirect operation.




3
.
1
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6.6 INDIRECT ABSOLUTE

In the case of all of the indirect operations previously described,
the indirect reference is always to a Page Zero location from which
are picked up the effective address low and effective address high.
There is an exception in the R6500-series microprocessor family for the
jump instruction in which absolute indirect jumps are allowed. The use
of the absolute indirect jump is best described in the discussion on

interrupts where the addressing mode and its capabilities are explained.

6.7 APPLICATION OF INDEXES

As has been developed in many of the previous examples, an index
register has primary values as a modifier and as a counter. As a
modifier to a base address operation, it allows the accessing of
contiguous groups of data by simple modification of the index. This
is the primary application of indexes, and it is for this purpose that
they were created. By virtue of the fact that all of the R6500 instruc-
tions have the base address in the instruction or, in the case of the in-
direct, in the pointer, a single index can usually service an entire
loop, because each of the many instructions in the loop are normally
referring to the same relative value in each of the lists. An example
is adding the third byte of a number to the corresponding third byte
of another number, then storing the result in the memory location
representing the third byte of the result; therefore, the index register

needs to contain only three to accomplish all three of these offset

functions.

In some other microprocessors internal registers serve as indirect
pointers. The single register requirement is a significant advantage
of the type of indexing done in the R6500. Even though the R6500 has
two indexes, more often than not, a single index will solve many of
the problems because of the fact that the data is normally organized

in corresponding filelds.

The second feature of the R6500 type of indexing is that, if applied
properly, the index register also contains the count of the operations

to be performed.
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The examples given in this manner are presented in an attempt to show

how to take advantage of that feature. There are two approaches to counting:

forward counting and reverse counting. In forward counting, the data in
memory can be organized in such a manner that the index register starts at
zero and is added to on each successive operation. The disadvantage of this
type of approach is that the compare index instruction, as used in Example
6.13, must be lnserted into the loop in order to determine that the cor-

rect number of operations 1s completed.

The reverse counting approach has been applied in the latter
examples. The data must be organized for reverse counting operation.
The first value to be operated on is at the end of the FIELD, the
next value is one memory location in front of that, etc. The ad-
vantage of this type of operation i1s that it takes advantage of the
combined decrement and test capability of the processor., There are
two ways to use the test. First there is the case where the actual
number of operations to be performed is loaded into the index register
as was done in Example 6.13. 1In this case, the index contains the cor-
rect count but if added to the base directly, would be pointing to one
value beyond the FIELD because the base address contains the first byte.
Therefore, when using the actual count in the index register, one always
references to the base address minus one. This is easily accomplished as
shown in the examples. The assembler accepts symbolic references in the
form of base address minus one, and the microprocessor very carefully per-

forms the operation shown.

The advantage of putting the actual count in the register is
that the branch if not equal instruction (BNE) can be used because

the value of the register goes to zero on the last operation.

The second alternative is to load the counter with the count
minus one as done in Example 6.14. In this case, the actual value of
the base address is used in the offset. However, the branch back

to loop now 18 a branch plus, remembering that the value in the index

| register will not go to minus (all ones) until one decrement is past
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Example 6.16 : Move N Bytes (N < 256)

Values of count minus one through zero will all take the branch.

It is only when attempting to reference less than the base address Number of Program Instruction d
c operan
that the loop will be completed. Cycles Label Mnemonics FIELD Comments
g MOVE LDA #FROML
Either approach gives minimum coding and requires only that 2 STA FRPOINT
LDA
the user develop a philosphy of always organizing his data with 3 STA g;gngT ‘1 Move FROM Address to
the first value at the end. In many cases, the operations such as 2 an Indirect Pointer
LDA
MOVE can be performed even if the data is organized the other way. #T0L
Experienced programmers find that this reverse. counting form is 3 STA TOPOINT Move TO Address
o2 LDA FTOH to an Indirect Pointer
actually more convenient to use and always results in minimum loop 3 STA TOPOINT + 1
2
time and space. LDX #BLOCKS
g LDY 0 Setup Number of 256
Block
. Loop LDA (FRPOINT) Y Loo; ;it°'“°ve
Although for most applications, the 8-bit index register permits STA (TOPOINT),Y me: 16 Cycles/
2 DEY i Byte. Move 256 Bytes
simple count in offset operations, there are a few operations where 3 BNE LOOP
5
the 256 count that is available in the 8-bit register is not adequate 5 SPECIAL INC FRPOINT + 1 Incr High
INC b . ease g
to perform the indexed operations. There are two solutions to this 2 DEX TOPOINT + 1 Pointer
2
problem. First to code the program with two sets of bases —- that . BMI ouT
. 3 BNE LOOP Check for Last Move
is, to duplicate the coding for the loop with two different address " 2 LDY JCOUNT
The second, more useful solution, is 3 BNE LOOP
ouT — — Set Up Last Move

highs, each a page apirt.

ndirect operations because the indirect pointer can be
Memory Required:

to go to i
40 Bytes

modified to allow an infinite indexed operation. An example of the

move done under 256 and over 256 is shown in the following examples:

Example: 6.15: Move N Bytes (N< 256)

Number of Program Instruction OPERAND
Cycles Label Mnemonics FIELD Comments
2 LDX #BLOCK Set Up 2 Cycles
4 LOOP LDA FROM-1,X i N
4 STA TO -1,X LOOP Time: s
2 DEX 13 Cycles
3 BNE LOOP

Memory Required:

11 Bytes
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CHAPTER 7

INDEX REGISTER INSTRUCTIONS

The index registers can be treated as auxiliary general-purpose reg-
isters, having the added ability of being incremented and decremented

because of the normal operations which they are required to perform.

7.0 LDX -- LOAD INDEX REGISTER X FROM MEMORY

Load the index register X from memory.

The symbolic notation is M + X.

LDX does not affect the C or V flags; sets Z if the value
loaded was zero, otherwise resets it; sets N if the value loaded in
bit 7 is a 1, otherwise N is reset; and affects only the X register.
The addressing modes for LDX are Immediate; Absolute; Zero Page;

Absolute Indexed by Y; and Zero Page Indexed by Y.

7.1 LDY -- LOAD INDEX REGISTER Y FROM MEMORY

Load the index register Y from memory.

The symbolic notation is M + Y.

LDY does not affect the C or V flags, sets fhe N flag 1f the
value loaded in bit 7 is a 1, otherwise resets N; sets Z flag 1f the
loaded value is zero, otherwise resets Z; and affects only the Y reg-
ister. The addressing modes for load Y are Immediate; Absolute;

Zero Page; Zero Indexed by X, Absolute Indexed by X.

h




7.2 STX -- STORE INDEX REGISTER X IN MEMORY

Transfers value of X register to addressed memory location.

The symbolic notation is X + M.

No flags or registers in the microprocessor are affected by
the store operation. The addressing modes for STX are Absolute,

Zero Page, and Zero Page Indexed by Y.

7.3 STY -- STORE INDEX REGISTER Y IN MEMORY

Transfer the value of the Y register to the addressed memory
location. The symbolic notation is Y + M. STY does not affect any
flags or registers in the microprocessor. The addressing modes for

STY are Absolute; Zero Page; and Zero Page Indexed by X.

7.4 INX - INCREMENT INDEX REGISTER X BY ONE

Increment X adds 1 to the current value of the X register. This
is an 8-bit increment which does not affect the carry operation, there-
fore, if the value of X before the increment was FF, the resulting i
value is 00, The symbolic notation is X + 1 » X. 1NX does not affect %
the carry or overflow flags; it sets the N flag if the result of the
increment has a one in bit 7, otherwise resets N; sets the Z flag if
the result of the increment is 0, otherwise it resets the Z flag.

INX does not affect any other register other than the X register. INX

is a single byte instruction and the only addressing mode is Implied.

7.5 INY — INCREMENT INDEX REGISTER Y BY ONE

Increment Y increments or adds one to the current value in the
Y register, storing the result in the Y register. As in the case of
INX the primary application is to step through a set of values using
the Y registey. The symbolic notation is Y + 1 +Y. The INY does not
affect the carry or overflow flags; sets the N flag if the result of

the increment has a one in bit 7, otherwise resets N; sets Z if

as a result of the increment the Y register is zero, otherwise resets
the Z flag. Increment Y is a single-byte instruction and the only

addressing mode is Implied.

7.6 DEX - DECREMENT INDEX REGISTER X BY ONE

This instruction subtracts one from the current value of the
index register X and stores the result in the index register X.

The symbolic notation is X - 1 - X

DEX does not affect the carry or overflow flag, it sets the
N flag if it has bit 7 on as a result of the decrement, otherwise
it resets the N flag; sets the Z flag if X is a 0 as a result of
the decrement, otherwise it resets the 2 flag.

DEX is a single-byte instruction, the addressing mode is

Implied.

7.7 DEY -- DECREMENT INDEX REGISTER Y BY ONE

This instruction subtracts one from the current value in the in-
dex register Y and stores the result into the index register Y. The
result does not affect or consider carry so that the value in
the index register Y is decremented to 0 and then through 0 to FF.

Symbolic notation is Y - 1Y

Decrement Y does not affect the carry or overflow flags; if the
Y register contains bit 7 on as a result of the decrement the N flag
is set, otherwise the N flag is reset. If the Y register is 0 as a
result of the decrement, the Z flag is set, otherwise the Z flag 1s
reset. This instruction affects only the index register Y.

DEY is a single byte instruction and the addressing mode is
Implied.

NOTE: Decrement of the index registers is the most convenient
method of using the index registers as a counter, in that the decre-
ment involves setting the value N as a result of having passed

through O and sets Z when the results of the decrement are 0.




7.8 CPX -- COMPARE INDEX REGISTER X TO MEMORY  ; 7.10 TRANSFERS BETWEEN THE INDEX REGISTERS AND ACCUMULATOR

This instruction subtracts the value of the addressed memory
There are four instructions which allow the accumulator and in-

location from the content of index register X using the adder but
dex registers to be interchanged. They are TXA, TAX which transfer

does not store the result; therefore, its only use is to set the 3

) the contents of the index register X to the accumulator A and back,
A d C fla to allow for comparison between the index register 1

N, an gs to ° P n & ; and TYA, TAY which transfer the contents of the index register Y to

X and the value in memory. 3

y | the accumulator A and back. The usefulness of these will be discussed
The symbolic notation is X - M. :
¢ after the instructions.

The CPX instruction does not affect any register in the machine;

it also does not affect the overflow flag. 1t causes the carry to be E 3 711 TAX -- TRANSFER ACCUMULATOR TO INDEX X

set on if the absolute value of the index register X is equal to or

greater than the data from memory. If the value of the memory is This instruction takes the value from accumulator A and trans-

greater than the content of the index register X, carry is reset. fers or loads it into the index register X without disturbing the

If the results of the subtraction contain a bit 7, then the N flag contents of the accumulator A.

is set, if not, it is reset. If the value in memory is equal ‘to the ;;' The symbolic notation for this is A > X.

value in index register X, the Z flag is set, otherwise it is reset. ‘ TAX only affects the index register X, does not affect the
The addressing modes for CPX are Immediate, Absolute and Zero 3 carry or overflow flags. The N flag is set if the resultant value in

Page. the index register X has bit 7 on, otherwise N is reset. The Z bit

is set if the content of the register X is 0 as a result of the opera-

7.9 CPY -- COMPARE INDEX REGISTER Y TO MEMORY B 3 tion, otherwise it is reset. TAX is a single-byte instruction and
k i

its addressing mode is Implied.
This instruction performs a two's complement subtraction between

the index register Y and the specified memory location. The results w & 712 TXA - TRANSFER INDEX X TO ACCUMULATOR

of the subtraction are not stored anywhere. The instruction is strict- .

ly used to set the flags. B This instruction moves the value that is in the index register
The symbolic notation for CPY is ¥ - M. X to the accumulator A without disturbing the contents of the index
CPY affects no registers in the microprocessor and also does not register X.

affect the overflow flag. If the value in the index register Y is The symbolic notation is X > A.

equal to or greater than the value in the memory, the carry flag will - ; TXA does not affect any register other than the accumula- L

be set, otherwise it will be cleared. If the results of the subtract- . [ tor and does not affect the carry or overflow flag. 1If the result in ‘&

tion contain bit 7 on the N bit will be set, otherwise it will be A has bit 7 on, then the N flag is set, otherwise it is reset. If the ‘:

f Sk resultant value in the accumulator is 0, then the Z flag is set, other- ‘W

cleared. If the value in the index register Y and the value in the
wise it is r t.
’ memory are equal, the zero flag will be set, otherwise it will be ioid ese
| reset { i The addressing mode is Implied, it is a single-byte instruction.

The addressing modes for CPY are Immediate, Absolute and Zero Pagd .

?
[‘
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7.13 TAY -- TRANSFER ACCUMULATOR TO INDEX Y

This instruction moves the value of the accumulator into index
register Y without affecting the accumulator.

The symbolic notation is A » Y.

TAY instruction only affects the Y register and does not affec
either the cafry or overflow flags. If the index register Y has bit
then N is set, otherwise it is reset. If the content of the index re
Y equals 0 as a result of the operation, 2 is set on, otherwise it is

TAY is a single-byte instruction and the addressing mode is In

7.14 TYA -- TRANSFER INDEX Y TO ACCUMULATOR

This instruction moves the value that is in the index register
to accumulator A without disturbing the contents of the register Y.

The symbolic notation is Y = A.

TYA does not affect any other register other than the accumula-
tor and does not affect the carry or overflow flag. If the result ir
the accumulator A has bit 7 on, the N flag is set, otherwise it is
reset. If the resultant value in the accumulator A is 0, then the 2
flag is set, otherwise it is reset

The addressing mode is Implied and it is a single-byte instruc-

tion.

Some of the applications of the transfer instructions between
accumulator A and index registers X, Y are those when the user wishes
to use the index register to access memory locatlions where there are
multiple byte values between the addresses. In this application a
count is loaded into the index register, the index register is trans-
ferred to the accumulator, a value such as 5, 7, 10, etc. is added

immedjiate to the accumulator and results stored back into the index
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register using the TAX or TAY instruction. The consequence of this
type of operation is that it allows the microprocessor to address
non-consecutive locations in memory. Another application .is where
the internal transfer instructions allow the index registers to hold
intermediate values for the accumulator which allows rapid transfer
to and from the accumulator to help solve high speed data shuffling

problems.

7.15 SUMMARY OF INDEX REGISTER APPLICATIONS AND MANIPULATIONS

Primary use of index register X and Y is as offset and counters
for data manipulation in which the index register is used to compute
an address based on the value of the index register plus base address
specified by the user, either in a fixed instruction format or in a
variable pointer t;pe format. In order to operate as both an offset
and counter, index registers may be incremented or decremented by one
or compared to values from memory. There are limitations on the
applications of each of the index registers which have to do with
formats which are unique to certain instruction addressing modes.
Because of the ability of the index registers to be loaded, changed
and stored, they are also useful as general purpose registers. They
can be used as interim storages for moves between memory locations
or for moves between memory and the accumulator.

One of the optimum uses of the indexing concept is the case
when the index register is being used both as an offset and a counter.
This type of operation makes use of the ability of the microprocessor
to perform a decrement function on the index registers and set flags.
Therefore, a single decrement instruction not only changes the value

in the counter but can also perform a test on the count value.




CHAPTER 8

STACK PROCESSING

8.0 INTRODUCTION TO STACK AND TO PUSII DOWN STACK CONCEPT

In all of the discussions on addressing, it has been assumed that
either the exact location or at least a relation to an exact location of a
, b memory address was known.

‘ Although this is true in most of the programming for control applica-

- tions, there are cerfain types of programming and applications which re-

' quire the basic program not to be working with known memory locations but

only with a known order for accessing memory. This type of programming is

" called 're-entrant coding' and it is often used in servicing interrupts.

To implement this type of addressing, the microprocessor maintains a
separate address generator which is used by the program to access memory.
This address generator employs a push down stack concept.

Discussions of push-down stacks are usually best stated considering
that 1f one were given three cards -- an ace, a king, and a ten -- and
were told that the order of cards was important, and were then asked to lay

; them down on the table in the order in which they were given, ace first,
¢ ; .. the king on top of it and finally the ten, and then if they were retrieved
: one card at a time, the ten would be retrieved first even though it was

put on last, the king would be retrieved second, and the ace would be

retrieved last, even though it was put on first.
: . The only commands needed to implement this operatiom are 'put next
; - ! card on stack” and "pull next card from the stack."” The stack could be
processing clubs and then go to diamonds and back to clubs. However, we [

X ’ iknow that while we are processing clubs, we will always find the ten first,

king second, etc.

i
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The hardware implementation of the ordered card stack which was just
Following is an example of a program that would create the Example 8.1

described is a 8-bit counter, into which the address of a memory location
stack operation.

is stored. This counter is called a '"Stack Pointer." Every time data are

Example 8.2: Basic Stack gperation

to be pushed onto the stack, the stack pointer is put out on the address

bus, data are written into the memory addressed by the stack pointer, and b Program
Counter Label Instruction

the stack pointer is decremented by 1 as may be seen in Example 8.1.

Every time data are pulled from the stack, the stack pointer is incremented

by 1. The stack pointer is put out on the address bus, and data are read

from the memory location addressed by the stack pointer. This implementa- PCl Jump to Subroutine 1
tion using the stack pointer gives the effect of a push-down stack which
is program-independent addressing.
Example 8.1: Basic Stack Map for 3-Deep JMP to Subroutine Sequence .
Stack Address Data | k SUB1 »
OLFF PCH 1 ’
OlFE PCL 1
O1FD PCH 2 PC2 Jump to Subroutine 2 ___W
O1FC PCL 2
01FB PCH 3
O1FA PCL 3
O1F9
In the above example, the stack pointer starts out at 01FF. The stack‘;; . f
pointer is used to store the first state of the program counter by storing . ' :
th tent of r ter high at OLFF, and ti t of < ‘
e content of program counte gh a , an he content of program & SUB2
counter low at O1FE. The stack pointer would now be pointed at OlFD. The .3 :
second time the store program count is performed, the program counter high ' ’
number is stored on the stack at OlFD and the program counter low is stored ! PC3 Jump to Subroutine 3 é

at O1FC. The stack pointer would now be pointing at 01FB. The same pro-
cedure is used to store the third program counter.

When data are taken from the stack, the PCL 3 will come first and the
PCH 3 will come second just by adding 1 to the stack pointer before each SUB3
memory read. The example above contains the program count for 3 successive g
jump and store operations where the jump transfers control to a subroutine
and stores the value of the program counter onto the stack in order to re-j‘u

member to which address the program should return after completion of the

subroutine.




This is known as subroutine nesting and is often encountered in solv-
ing complex control equations.
To correctly use the stack for this type of operation requires a jump

to subroutine and @ return from-subroutine instruction.

8.1 JSR -- JUMP TO SUBROUTINE

This instruction transfers control of the program counter to a sub-
routine location but leaves a return pointer on the stack to allow the
user to return to perform the next instruction in the main program after
the subroutine i1s complete. To accomplish this, the JSR instruction stores
the program counter address, which poirts to the last byte of the jump
instruction, onto the stack using the stack pointer.
the program count high first, followed by program count low. The JSR then
transfers the addresses following the jump instruction to the program
counter low and the program counter high, thereby directing the program
to begin at that new address.

The symbolic notation for this is PC + 2+, (PC + 1) =+ PCL,

(PC + 2) - PCH.

The JSR instruction affects no flags, causes the stack pointer to be
decremented by 2 and substitutes new values into the program counter low
and the program counter high. The addressing mode for the JSR is always
Absolute.

Example 8.3 gives the details of a JSR instruction.

JSR Instruction

Example 8.3: Illustration of

Program Memory

PC Data

0100 JSR

0101 ADL

0102 ADH Subroutine
_Stack_Memoxy

Stack

Pointer Stack

O1FF 01

O1FE 02

O1FD

The stack byte contains

External Internal
Cycle Address Bus Data Bus Operations Operations
1 0100 OP CODE Fetch Finish Previous
Instruction Operation; Incre-
ment PC to 0101
2 0101 New ADL Fetch Decode JSR;
New ADL Increment PC to 0102
3 O1FF Store ADL
4 O1FF PCH Store PCH Hold ADL, Decre-
ment S* to OIFE
5 O1FE PCL Store PCL Hold ADL, Decre-
ment S* to OlFD
6 0102 ADH Fetch ADH Store Stack Pointer
7 ADH, ADL New Fetch New ADL » PCL
OP CODE OP CODE ADH » PCH

* S denotes "Stack Pointer."

In this example, it can be seen that during the first cycle the micro-
processor fetches the JSR imstruction. During the second cycle, address
low for new program counter low is fetched. At the end of cycle 2, the
microprocessor has decoded the JSR imstruction and holds the address low

in the microprocessor until the stack operations are complete. NOTE: The

stack is always stored in Page 1 (Hex address 0100-01FF) .

The operation of the stack in the R6500-series microprocessors is such
that the stack pointer is always pointing at the next memory location
into which data can be stored. In Example 8.3, the stack pointer is assumed
to be at OLFF in the beginning and PC at location 0100. During the third
cycle, the microprocessor puts the stack pointer onto the address lines and
"on the fourth writes the contents of the current value of the program counter
"high, 01, into the memory location indicated by the stack pointer address.
During the time that the write is being accomplished, the stack pointer is

being automatically decremented by 1 to OlFE. During the fifth cycle, the

PCL is stored in the next memory location with the stack pointer being auto-

matically decremented.
It should be noted that the program counter low, which is now stored

in the stack, is pointing at the last address in the JSR sequence. This

is not what would be expected as a result of a JSR instruction. It would

be expected that the stack points at the next instruction. This apparent

anomaly in the machine is corrected during the Return from Subroutine in-

1

struction.




|
|

NOTE: At the end of the JSR instruction, the values on the stack con-
tain the program counter low and the program counter high which referenced
the last address of the JSR instruction. Any subroutine calls which want
to use ‘the program counter as an intermediate pointer must consider this
fact. It should be noted also that the Return from Subroutine instruction
performs an automatic increment at the end of the RTS which means that any
program counters which are substituted on the stack must be 1 byte or 1
pointer count less than the program count to which the programmer expects
the RTS to return.

The advantage of delaying the accessing of the address high until
after the current program counter can be written in the stack is that only
the address low has to be stored in the microprocessor. This has the
effect of shortening the JSR instruction by one byte and also minimizing in-
ternal storage requirements.

After both program counter low and high have been transferred to the

stack, the program counter is used to access the next byte which is the ad-

dress high for the JSR. During this operation, the sixth cycle, internally
the microprocessor is storing the stack pointer which is now pointing at
OlFD or the next location at which memory can be loaded.

During the seventh cycle, the address high from the data bus and the
address low stored in the microprocessor are transferred to the new program
counter and aretused to access the next OP CODE, thus making JSR a 6-cycle
instruction.

At the completion of the subroutine the programmer wants to return to
the instruction following the Jump-to-Subroutine instruction. This is
accomplished by transferring the last 2 stack bytes to the program counter ;
which allows the microprocessor to resume operations at the instruction fol{

lowing the JSR, and it is done by means of the RTS instruction.

8.2 RTS -- RETURN FROM SUBROUTINE

This instruction loads the program count low and program count high
from the stack into the program counter and increments the program counter
so that it points to the instruction following the JSR. The stack pointer !
is adjusted by incrementing it twice.

The symbolic notatlon for the RTS is PCt, INC PC.
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The RTS instruction does not affect any flags and affects only PCL

and PCH. RTS is a single-byte instruction and its addressing mode is Im-

plied.

The following Example 8.4 gives the details of the RTS instruction.

It is the complete reverse of the JSR shown in Example 8.3.

Example 8.4: 1Illustration of RTS Instruction

Program Memor

PC Data
0300 RTS
0301 ?

Stack Memory
Stack Pointer Stack

O1FF 01
O1FE 02
01FD ?

Return from Subroutine (Example)

Operation, 0301 - PC

External Internal
Cycle Address Bus Data Bus Operations Operations
1 0300 OP CODE Fetch Finish Previous
OP CODE
2 0301 Discarded Fetch Dis- Decode RTS
Data carded Data
3 01FD Discarded Fetch Dis- Increment Stack
Data carded Data Pointer to O1lFE
4 O1FE 02 Fetch PCL Increment Stack
Pointer to OlFF
5 O1FF 01 Fetch PCH
6 0102 Discarded Put Out PC Increment PC by 1
Data to 0103
7 0103 Next Fetch Next
OP CODE OP CODE
8-7
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As we can see, the RTS instruction effectively unwinds what was done
to the stack in the JSR instruction, Because RTS is a single~byte instruc-
tion it wastes the second memory access in doing a look-ahead operation.
During the second cycle, the value located at the next program address
after the RTS is read but not used in this operation. It should be
noted that the stack is always left pointing at the next empty location,
which means that to pull off the stack, the microprocessor has to wait 1
cycle while it adds 1 to the stack address. This is done to shorten the

interrupt sequence which will be discussed below; therefore, cycle 3 is a

dead cycle in which the microprocessor fetches but does not use the current §

value of the stack and, like the fetch of address low on Indexed and Zero
Page Indexed operations, does nothing other than initialize the micro-
processor to the proper state. It can be seen that the stack pointer de-
crements as data is pushed on to the stack and increments as data is

pulled from the stack. In the fourth cycle of the RTS, the microprocessor

gram count low which was written in the second write cycle of the JSR.

During the fifth cycle, the microprocessor puts out the incremented stack

of the JSR.

As is indicated during the discussions of JSR, the program counter
stored on the stack really points to the last address of the JSR instruc-
tion itself; therefore, during the sixth cycle the RTS causes the program

count from the stack to be incremented. That is the only purpose of the

sixth cycle. Finally, in the seventh cycle, the incremented program counter®

is used to fetch the next instruction; therefore, RTS takes six cycles.

Because every subroutine requires one JSR followed by one RTS, the time}

to jump to and return from a subroutine is 12 cycles.

In the previous two examples, we have shown the operations of the JSR‘
located in location 100 and the RTS located in location 300. The follow- 3
ing pictorial diagram, Example 8.5, illustrates how the memory map for

this operation might look:

t 8-8
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Fxample 8.5: Memory Map for RIS Instruction

Address
Bus Data
100 JSR
101 04 —
102 02
103 Next Instruction qj
0204 First Instruction of Subroutine
0300 RTS

With this capability of subroutining, the microprocessor i1s allowed to
go from the mailn program to 1 subroutine, to the second subroutine, to a
third subroutine, and then finally to work its way back to the main pro-

gram. Examplé 8.6 is an expansion of Example 8.2 with the returns

included.

Example 8.6: Expansion of RTS Memory Map

Main Program

JSR SUB1
———3» Next Inst. I
[ Stack Located at
SUBl 01FF, O1FE

Test a Value

JSR  SUB2

RTS
— Stack Located at

Ly sus2 — 01FD, O1FC ;
ISR SUB3——-—-——1 .3
—

RTS

L sus3

Stack Located at
OlFB, OlFA

RTS




This concept is known as nesting of subroutines, and the number of

subroutines which can be called in such a manner is limited only by the

DATA BUS ]

L
{ IR { i} i g T 38 8 {8
8.3 IMPLEMENTATION OF STACK LlNzﬂx l I 'NgEXJ KS)%E:R ] [ﬁuu Jcr_oi A J [ peL 1 »qu [ v J

As we have seen, the primary requirement for the stack is that irre- ; ﬁ
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MEMORY J

length of the stack.

spective of where or when a stack operation is called, the microprocessor

must have an independent counter or register which contains the current

memory location value of the stack address. This register is called the k-

Stack Pointer, S. The stack becomes an auxiliary field in memory which

is basically independent of programmer control. We will discuss later how

the stack pointer becomes initialized, but once it is initialized, the pri-

mary requirement 1is that it be self-adjusted. 1In other words, operations

i a h k ca - - . . . . . . . . .
which put data on the stack cause the pointer to be decremented automati ¢ Partial Block Diagram of a R6500 Microcomputer System Microprocessor Including Stack Pointer, S

cally; operations which take data off the stack cause the pointer to

FIGURE 8.1
be incremented automatically. Only under rare circumstances should the
programmer find it necessary to move his stack from one location to another s
if he is using the stack as designed. o The primary purpose of the stack is to furnish a block of memory loca-

L
On this basis, there is no need for a stack to be longer than 256 bytes.] . tions in which the microprocessor cam write data such as the program coun-

‘ To perform a single subroutine call takes only two bytes of stack memory. ' > ter for use in later processing. In many control systems the requirements

To perform an interrupt takes only three bytes of stack memory. Therefore, - for read/write memory are very small and the stack just represents another

with 256 bytes, one can access 128 subroutines deep or interrupt 85 times. demand on read/write memory. Therefore for these applications it is preferable

Therefore the length of the stack is extremely unlikely to be limiting. for the stack to be in the Page Zero location in order that memory allocation

Microprocessors in the R6500 serles have a 256-byte stack length.  for the stack, the Zero Page operations, and the indirect addresses can be

1 '
Figure 8.1, which is now the complete block diagram, shows all of the ' performed. Therefore, one of the requirements of a stack is that it be

microprocessor registers. The 8-bit stack pointer register, S, has been .;' Y. easily locatable into Page Zero.
. . . N . FR
added. It is initialized by the programmer and thereafter automatically . On the other hand, if more than one page of RAM is needed because of the
. 1 RY )
increments or decrements, depending on whether data is being put on the amount of data that must be handled by the user programs, having the stack

stack or taken off the stack by the microprocessor under control of the in Page Zero is an unnecessary waste of Page Zero memory in the sense that

program or the interrupt lines. i’ ¥ the stack can take no real advantage of being located in Zero Page, whereas

[ other operations can.
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In each of the examples, the stack has been located at high-order
address 01 followed by a low-order address. In the same manner that the
microprocessor forces locations 00 onto the high-order 8 bits of the
address lines for Zero Page operations, the microprocessor automatically
puts Ol Hex onto the high-order 8-bit address lines during each stack
operation. This has the advantage to the user of locating the stack into
Page One of memory which would be the next memory location added if the
Zero Page operation requirements exceed Page Zero memory capacity. This
has the advanta%e of the stack not requiring memory to be added specifi-
cally for the stack but only requiring the allocation of existing memory
locations. It should be noted that the selected addressing concepts of
the R6500-series microprocessor support devices would involve connecting the‘
memories such that bit 8, which is the selection bit for the Page One
versus Page Zero, is a 'don't care" for operations in which the user does
not need more than one page of Read/Write memory. This gives the user the
effect of locating the stack in Page Zero for those applications.

The second feature that should be noted from the examples is that
the stack was located at the end of Page One and decremented from that
point towards the beginning of the page. This is the natural operation of:ﬁ
the stack. RAM memory comes in discrete increments (64, 128, 256)bytes so £
the normal method of allocating stack addressing is for the user te calcu- ?
late the number of bytes probably needed for stack access. This could be ~;

done by analyzing the number of subroutines which might be called and the 3

between subroutines, or the number of interrupts plus subroutines which
might occur with the respective data that would be stored on the stack for
each of them. By counting three bytes for each interrupt, two bytes for
each jump to subroutine, plus one byte for each programmer-controlled stack
operation, the microprocessor designer can estimate the amount of memory
which must be allocated for the stack. This is part of his decision—makingS
process in declding how much memory 1s necessary for his whole program.
Once the allocation has been made, it is recommended that the user
assign his working storage from the beginning of memory forward and always
load his stack at the end of either Page Zero, Page One, or at the end of

his physical memory which is located in one of those locations. This willi

8-12

‘-b;assign his memory such that the stack has more room to operate; or (2) if
amount of data which might be put onto the stack in order to communicate L A

give the effect of having the highest bytes of memory allocated to the
stack, with lower bytes of memory allocated to user working storage; hope-
fully, the two will never overlap.

It should be noted that the natural operation of the stack, which often
is called by hardware not totally under program control, is such that it
will continue to decrement throughout the page to which it is allocated irre-
spective of the user's desire to have it do so. A normal mistake in allo-
cation of memory can result in the user's writing data into a memory location
and later accessing it with another subroutine or another part of his pro-
gram, only to find that the stack has ;ery carefully written over that area
as the result of its performing hardware control operations. This is one
of the more difficult problems to diagnose. If this problem is suspected
by the programmer, he should analyze memory locations higher than unex-
plained disturbed locations.

There is a distinctive pattern for stack operations which are unique
to the user's program dut which are quite predictable. An analysis of the
value which has been destroyed will often indicate that it is part of an
address which would normally be expected during the execution of the pro-
gram between the time data were stored and the time they were fetched. This is
a very strong indication of the fact that the stack somehow or other did get
into the user's program area. This is almost always caused by improper con-

trol of interrupt lines or unexpected operations of interrupt or subroutine

;;calls and has only two solutions: (1) If the operation is normal and predict-

able, the user must assign more memory to his program and particularly re-
the operation of the interrupt lines is not predictable, attention must be
operation.

8.3.1 Summary of Stack Implementation

The R6500 series microprocessors have a single 8-bit stack
register. This register is automatically incremented and decre-
mented under control of the microprocessor to perform stack manipula-
tion operations, under direction of the user program or the interrupt

lines. Once the programmer has initialized the stack pointer to the
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end of whatever memory he wants the stack to operate in, the program-
mer can ignore stack addressing other than in those cases where there
is an interference between stack operations and his normal program
wvorking space.

In the R6500 series, the stack is automatically located
in Page One. The microprocessor always puts out the address
0100 plus'stack register for every stack operation. By selected mem-
ory techniques, the user can either locate the stack in Page Zero or

Page One, depending on whether or not Page One exists for his hard-

ware.

8.4 USE OF THE STACK BY THE PROGRAMMER

Discussed in Section 8.1 was the use of the JSR to call a subroutine.
However, not indicated was the technique by which the subroutine knew
which data to operate on. There are three classical techniques for communi-
cating data between subroutines. The first and most straightforward tech-
nique is that each subroutine has a defined set of working registers located
in Page Zero in which the user has left values to be operated on by the
subroutine. The registers can either contain the values directly or can
contain indirect pointers to values which would be operated on. The

following example shows the combination of these:

Example 8.7: Call-a-Move Subroutine Using Preassigned Memory Locations

Location 10 = Count

Location 11, 12 = Base from Address’
Location 13, 14

Base to Address
Main Line Routine

No. of. A

Bytes ¢ Instruction Comment .3
2 LDA #Count -1 Load Fixed Value for the Move%i
2 STA 10 ;
2 LDA #FRADH " " . i
2 STA 12 Set up "FROM" Pointer ?
2 LDA #FRADL r
2 STA 11
2 LDA #TOADL
2 STA 13
2 LDA #TOADH Wit : :
2 STA 14 Set up "TO" Pointer ?

3 JSR SUBL ke
23 bytes 3
kL
8-14 5:
i

- — — -

PSS WP

Subroutine Codin

No. of

Bytes Label Instruction
2 SUB1 LDY 10
2 Loop LDA (11), Y
2 STA (13), Y
1 DEY
2 BNE LOOP
1 RTS

Total 33 Bytes

As has been previously discussed, the loop time is the overriding con-
sideration rather than setup time for a large number of executions.

It can be seen that we have used the techniques developed in previous
sections of the indirect referencing, the jump to subroutine and the return
from subroutine to perform this type of subroutine value communication.

In this operation, there was no use of the stack except for the program
counter value.

A second form of communication is the use of the stack itself as an
intermediate storage for data which are going to be communicated to the
subroutine. In order for the programmer to use the stack as an intermediate
storage, he needs instructions which allow him to put data on the stack and
to read from the stack. Such instructions are known as '"push' and "pull" in-

structions.

8.5 PHA - PUSH ACCUMULATOR ON STACK

This instruction transfers the current value of the accumulator to
the next location on the stack, automatically decrementing the stack to
point to the next empty location.

The symbolic notation for this operation is A 4. It should be remem-
bered that the notation ¢ means push to the stack, while t means pull from
the stack.

The Push A instruction affects only the stack pointer register which
is decremented by 1 as a result of the operation. It affects no flags.

PHA is a single-byte lnstruction and its addressing mode 1s Implied.

The following example shows the operations which occur during Push A

instruction.
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Example 8.9: Operation of PLA stack from Example 8.8

Example 8.3: Operation of PHA, Assuming Stack at OLFF External Internal
Cycles Address Bus Data Bus Operations Operations
External Internal w
Cycles Address Bus Data Bus Operations Operations = 1 0200 PLA Fetch Finish Previous Opera-
I st i I - PC
1 0100 OP CODE Fetch Finish Previous pstruction ES?H' nerement PG to
Instruction Operation, Incre- - .
ment PC to 0101 - 2 0201 Next Fetch Next Interpret Instruction,
B OP CODE OP CODE d Hold P-C t
2 0101 Next Fetch Next Interpret PHA In- - . an © ounter
- : 3 Discard
OP CODE OP CODE struction, Hold 8
and Discard P-Counter 3 O1FE Discarded Read Stack Increment Stack Pointer
3 Data R
3 Q1FF (A) Write A on Decrement Stack b to OLFF
Stack Pointer to OlFE = . 4 O1lFF Data Fetch Data Save Stack
4 0101 Next Fetch Next 3 1 5 0201 Next Fetch Next Data > A

OP CODE OP CODE - OP COLE 0P CODE

When data are bei taken off the stack, there is one extra cycle duri
As can be seen, the PHA requires three cycles and takes advantage of the ten data are ng 0 ’ s on X cye uring

. - which time the current contents of the stack register are accessed but not
fact that the stack pointer is pointing to the correct location to write - g b

. . . . used and the stack pointer is incremented by 1 to allow access to the value
the value of A. As a result of this operation, the stack pointer will be ! Y

that was previously stored on the stack. The stack pointer is left point-

.setting at OlFE. The notation (A) implies contents of A. Now that the

S i

data are on the stack, later on in the program the programmer will call for ‘+f®  ing at this location because it is now considered to be an empty location
s K. - !
t P i 3 At %
the data to be retrieved from the stack with a PLA instruction. 3 © be used by the stack during a subsequent operation. i
Al 87 USE OF PUSIIES AND PULLS TO COMMUNICATE VARIABLES BETWELN SUBROUTINE ¥
8.6 PLA -- PULL ACCUMULATOR FROM STACK Lo OPERATIONS ;
This instruction adds 1 to the current value of the stack pointer and In Example 8.10, we perform the same operation as we did in Example 8.7, £
uses it to address the stack and loads the contents of the stack into the except that here, instead of using fixed locations to pick up the pointers, §
we use the stack as a communications vehicle: K

A register.

The symbolic notation for this is At. ; 3 Example 8.10: Call-a~Move Subroutine Using the Stack to Communicate

The PLA instruction does not affect the carry or overflow flags. It .
y Location 11, 12 = Base "FROM" Address
sets N if the bit 7 is on in accumulator A as a result of the instruction, Location 13, 14 = Base "TO" Address

otherwise it is reset. 1If accumulator A is zero as a result of the PLA, Main Line Routine

Bytes Instruction
he Z f1 i et, otherwise it is reset. The PLA instruction changes
then the ag s seh ° 8 2 LDA #Count ~1
the contents of accumulator A to the contents of the memory location at i PHA
stack register plus 1 and also increments the stack register. % tﬁ: #FRADL
The PLA instrucfion is a single-byte instruction and the addressing 2 LDA #FRADH
1 PHA
lied.
mode fs Implie 2 LDA #TOADL
In the following example, the data stored on the stack in Example 8.8 1 PHA
) are transferred to the accumulator. f ;32 #TOADH
3 JSR SUBL
| 18
8-16 8-17
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Subroutine

"
o
7

By Label Instruction Comments

SUBL LDX 6

LOOP1 PLA
STA 10,X
DEX Move Stack to Memory
BNE LOCP 1
PLA Set up Count
TAY

LOOP2 LDA (11),Y
STA (13),Y
DEY
BNE LOOP 2
LDA 15
PHA
LDA 16
PHA
RTS

Move Memory Location

Restore PC to Stack

HFEHERNFEFNNEFERDNEERENDERERND

Total 42 Bytes

We can see from this example that using the stack as a communica-
tion vehicle actually increases the number of bytes in the subroutine and;
the total bytes overall. However, the only time one should be using sub-i 3
routines in this case 1s when the subroutine is fairly long and is used =

fairly frequently. This technique does reduce the number of bytes in

the calling sequence. The calling sequence is normally repeated once for
every time the instructilon is called: therefore the use of the stack to
communicate should result in a net reduction in the number of bytes used E

in the total program. i3

Up until thfs time, we have been considering that the stack is at a3
fixed location and that all stack references use the stack pointer, It g
has not been explained how the stack pointer in the microprocessor gets
loaded and accessed. This is done through communication between. the sta

pointer and index register X.

8.8 TXS - TRANSFER INDEX X TO STACK POINTER

This instruction transfers the value in the index register X to thg
stack pointer.

Symbolic notation is X - S.

TXS changes only the stack pointer, making it equal to the content of]

the index register X. It does not affect any of the flags.

TXS is a single-byte instruction and its addressing mode is Implied.

Another application for TXS is the concept of passing parameters to
the subroutine by storing them immediately after the jump to subroutine
instruction.

In Example 8.11, the from and to address, plus the count of number of
values would be written right after the JSR instruction and its address.

By locating the stack in Page Zero, the address of the last byte of
the JSR can be incremented to point at the parameter bytes and then used
as an indirect pointer to move the parameter to its memory location.

The key to this approach 1is transferring the stack pointer to X,which
allows the program to operate directly on the address while it is in the
stack.

It should be noted that this approach automatically leaves the address
on the stack, positioned so that the RTS picks up the next OP CODE address.

Example 8.11: Jump to Subroutine (JSR) Followed by Parameters

Address Bus Data
0100 JSR
0101 ADL
0102 ADH
0103 To High
0104 To Low
0105 From High
0106 From Low
0107 Count
0108 Next OP CODE

Before concluding this discussion on subroutines and parameter passing,
it should again be noted that the use of subroutines should be limited to
those cases where the user expects to duplicate code of significant length
several times in the program. In these cases, and only in these cases, is
subroutine call warranted rather than the normal mode of knowing the
addresses and specifying them in an instruction. 1In all cases where timing

is of significant interest, subroutines should also be avoided. Subroutines

. add significantly to the setup and execution time of problem solution. How-

ever, subroutines definitely have their place in microcomputer code, and

three alternatives have been presented for use in application programs.

- The user will find a combination of the above techniques most valuable for

:solving his particular problem.




8.9 TSX -- TRANSFER STACK POINTER TO INDEX X

This instruction transfers the value in the stack pointer to the
index register X.

Symbolic notation is S - X.

TSX does not affect the carry or overflow flags. It sets N if

bit 7 is on in index X as a result of the instruction, otherwise it is

reset. If index X is zero as a result of the TSX, the Z flag is set, other-

wise it is reset. TSX changes the value of index X, making it equal to
the content of the stack pointer.

TSX is a single-byte instruction and the addressing mode is Implied.

8.10 SAVING OF THE PROCESSOR STATUS REGISTER

During the interrupt sequences, the current contents of the processor
status register (P) are saved on the stack automatically., However, there

are times in a program where the current contents of the P register must

be saved for performing some type of other operation. A particular example .3

of this would be the case of a subroutine which is called independently and .}

which involves decimal arithmetic. 1t is important that the programmer

keeps track of the arithmetic mode the program is in at all times. One way{'

to do this is to establish the convention that the machine will always be |

in binary or decimal mode, with every subroutine changing its mode being

responsible for restoring it back to the known state. This is a superior %
convention to the one that is about to be described. ;

A more general convention would be one in which the subroutine that A
wanted to change modes of operation would push P onto the stack, then set i
the decimal mode to perform the subroutine and then pull P back from the ?
stack prior to returning from the subroutine.

Instructions which allow the user to accomplish this are described

in Section 8.11 and 8.12,

8.11 PHP-- PUSH PROCESSOR STATUS ON STACK

This instruction transfers the contents of the processor status reg-
ister unchanged to the stack, as governed by the stack pointer.

Symbolic notation for this is P4,

The PHP instruction affects no registers or flags in the micropro-‘

cessor.

3
PHP is a single-byte instruction and the addressing mode is Implied. §
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8.12 PLP - PULL PROCESSOR STATUS FROM STACK

This instruction transfers the next value on the stack to the Proces-
sor Status register, thereby changing all of the flags and setting the mode
switches to the values from the stack.

Symbolic notation is P1,

The PLP instruction affects no registers in the processor other than
the status register. This instruction could affect all flags in the status

register.

PLP is a single-byte instruction and the addressing mode is Implied.

8.13 SUMMARY Ol THE STACK

The stack in the R6500 family is a push-down stack implemented
by a processor register called the stack pointer which the programmer ini-
tializes by means of a Load X immediately followed by a TXS instruction and
thereafter is controlled by the microprecessor which loads data into mem-
ory based on an address constructed by adding the contents of the stack
pointer to a fixed address, Hex address 0100. Every time the microproces-
sor loads data into memory using the stack pointer, it automatically decre-
ments the stack pointer, thereby leaving the stack pointer pointing at the
next open memory byte. Every time the microprocessor accesses data from
the stack, it adds 1 to the current value of the stack pointer and reads
the memory location by putting out the address 0100 plus the stack pointer.
The status register 1s automatically pointing at the next memory location
to which data can now be written. The stack makes an interesting place to
store interim data without the programmer having to worry about the actual
memory location in which data will be directly stored.

There are 8 instructions which affect the stack. They are: BRK,
JSR, PHA, PHP, PLA, PLP, RTI, and RTS.

BRK and RTI involve the handling of the interrupts.
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CHAPTER 9

RESET AND INTERRUPT CONSIDERATIONS

9.0 VECTORS

Before developing the concepts of how the R6500-series microprocessors
handle interrupts and start-up, a brief definition of the concept of vector
pointers should be developed.

In the sections on Jumps and Branches, it was always assumed that
the program counter is changed by the microprocessor under control of the
programmer while accessing addresses which were in program sequence. In
order to get the microprocessor started and in order to properly handle
external control or interrupt, there has been developed a different way
of setting the program counter to point at a specific location. This
concept 1is called vectored pointers. A vector pointer consists of a pro-
gram counter high and program counter low value which, under control of
the microprocessor, is loaded in the program counter when certain external
events occur. The word vector is developed from the fact that the micro-
processor directly controls the memory location from which a particular
operation will fetch the program counter value and hence the concept of
vector.

By allowing the programmer to specify the vector address and then by
allowing the programmer to write coding that the address points to, the
microprocessor makes available to the programmer all of the control
necessary to develop a general purpose control program. The microprocessor

has fixed addresses in memory from which it picks up the vectors. By this

~



implementation, minimum hardware in the microprocessor is required.
Locations FFFA through FFFF are reserved for vector pointers for the
microprocessor. Into these locations are stored the interrupt vectors

or pointers for non-maskable interrupt, reset, and interrupt request.

9.1 RESET OR RIESTART

In the microprocessor, there is a state counter which controls when
the microprocessor is golng to use the program counter to access memory
to pick up an instruction; then, after the instruction is loaded, the
microprocessor goes through a fixed sequence of interpreting instructions
and develops a series of operations which are based on the OP CODE
decoding.

Up to this point, it has been assumed that the program counter was
set at some location, and that all program counter changes are airected
by the program once the program counter had been initialized.

Instructions exist for the initialization and loading of all other
registers in the microprocessor except for the initial setting of the
program counter. It is for this initial setting of the program counter
to a fixed location in the restart vector location specified by the micro-
processor programmer that the reset line in the microprocessor is pri-
marily used.

The reset line is controlled during power on initialization and is
a common line which is connected to all devices in the microcomputer sys-
tem which have to be initialized to a known state. The initialigzation of
most 1/0 devices is such that they are brought up in a benign state so
that with minimum coding in the microcomputer, the programmer can con-

figure and control the 1/0 in an orderly fashion.

The concept has important implications in systems where damage can
be done if peripheral devices came up in unknown states. Therefore,

in the R6500, power on or reset control operates at two levels.

First, by holding of an external line to ground, and having this external
line connected to all the devices during power-up transient conditions,
the entire microcomputer system is initialized to a known disabled state.
Second, the releases of the reset line from the ground or TTL zero
condition to a TTL one condition causes the microprocessor to be automat-
ically initialized, first by the internal hardware vector which causes it
to be pointed to a known program location, ana secondly through a software
program which is written by the user to control the orderly start-up
of the microcomputer system.

All of the R6500 family parts also obey a discipline that while
the reset line is low, the system is in a stop or reset state. The micro-
processor is guaranteed to be in a Read state and upon release of the re-
set line from ground to positive, the microprocessor will continue to
hold the line in a Read state until it has addressed the specified vectored
count location, at which time control of the microprocessor is available

to the programmer.

9.2 START FUNCTION

While the reset line is in the low state, it can be assumed that
internal registers may be initialized to any random condition; therefore,
no conditions about the internal state of the microprocessor are assumed
other than that the microprocessor will, one cycle after the reset line

goes high, implement the following sequence:

DITarTIion o L .
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Example 9.1: Illustration of Start Cycle

Cycles Address Bus Data Bus External Operation Internal Operation
1 ? ? Don't Care Hold During Reset
2 7.4+ 1 ? Don't Care First Start State
3 0100 + SP ? Don't Care Second Start State
& 0100 + SP-1 ? Don't Care Third Start State
5 0100 + Sp-2 ? Don't Care Fourth Start State
6 FFFC Start PCL Fetch First Vector
7 FFFD Start PCH Fetch Second Vector Hold PCL
8 PCH PCL First Load First OP CODE

OP CODE

The start cycle actually takes seven cycles from the time the reset
line is let go to TTL plus. On the eighth cycle, the vector fetched from
the memory location FFFC and FFFD is used to access the next instruction.
The microprocessor is now in a normal program load sequence, the location
where the vector points should be the first OP CODE which the programmer
desires to perform.

The second point that should be noted is that the microprocessor
actually accesses the stack three times during the start sequence in
cycles 3, 4 and 5. This is because the start sequence is in effect a
specialized form of interrupt with the exception that the read/write line
is disabled so that no writes to stack are accomplished during any of the

cycles.

9 3 PROGRAMMIER CONSIDERATIONS FOR INITIALIZATION SEQUENCES

There are two major facts to remember about initialization. First, the
only automatic operations of the microprocessor during reset are to turn

on the interrupt disable bit and to force the program counter to the vector

location specified in locations FFFC and FFFD and to load the first instruc-

tion from that location. Therefore, the first operation in any normal pro-
gram will be to initialize the stack. This should be done by having pre-
viously decided what the stack value should be for initial operations and
then doing a LDX immediate of this value followed by a TXS. By this simple
operation, the microprocessor is ready for any interrupt or non-maskable
interrupt operation which might occur during the rest of the start-up

sequence.
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Once this is accomplished, the two nonvariable operations of the
machine are under control. The program counter is initialized and under
program control, and the staék is initialized and under program control.
The next operations during the initialization sequences will consist of
configuring and setting up the various control functions necessary to
perform the I/0 desired for the microprocessor.

Specific discussion for considerations regarding the start-up are
covered in Section 11.

The major things which have to be considered include the current
state of the I/0 device and the nondestructive operations that will
allow the state to be changed to the active state.

The initialization programs mostly consist of loading accumulator
A immediately with a bit pattern and storing it in the data control regis-
ter of an I/0 device.

NOTE : The interrupt disable is automatically set by the micro-
processor during the start sequence. This is to minimize
the possibility of a series of interrupts occurring during
the start-up sequence because of uncontrolled external
values, although it is usually possible to control interrupts
as part of the configuration.

The programmer should consider two effects: 1) The non-maskable
interrupt is not blockable by this technique since it would be possible
to configure a device that was connected to a non-maskable interrupt
and have to service the interrupt immediately; and 2) the mask must be
cleared at the end of the start sequence unless the user has specific
reason to inhibit interrupts after he has carried out the start-up
sequence. Therefore, the next~to-last instruction of the start—up.
sequence should be CLI.

It should be noted that the start-up routine is a series of
sequential operations which should occur only during power on initial-

ization and 1s the first step in the programmed logic of the machine.




Because the execution of the routine during power on occurs very
seldom in the normal operation of the machine, the coding for power
on sequence should tend to minimize the use of memory space rather
than speed.

The last instruction in the start-up sequence should initialize
the decimal mode flag to the normal setting for the program.

The next instruction should be the beginning of the user's normal
programming for his device, everything preceding that being known as

"housekeeping."

9.4 RESTART

It should be noted that the basic microprocessor control philosophy
allows for a single common reset line which initializes all devices.
This line can be used to clear the microprocessor to a known state and to
reset all peripherals to a known state; therefore, it can be used as a
result of power interruption, during the power on sequence, or as an
external clear by the user to re-initialize the system.

As discussed in the hardware manual, restart is often used as an
aid to making sure the microprocessor has been properly interconnected

and that programs have been loaded in the correct locations.

9.5 INTERRUPT CONSIDERATIONS

Up until this point, the microprocessor has to proceed under program-
mer control through a variety of sequences. The only way for the program-
mer to change the sequence of operations of the microprocessor was to
change the program counter location to point at new operations. The
microprocessor is in control of fetching the next instruction at the
conclusion of the current instruction. The only way that external events
could control the microprocessor, if it were not for interrupts, would be
for the programmer to periodically interrupt or stop processing data and
theck to see whether or not an external event which might cause him to

change his direction has occurred.

The problem with this technique is that

1/0 events are usually asynchronous, i.e., not timed with the micro-

processor internal instructions; therefore, it would be possible for the
event to occur shortly after the programmer has stopped to lock at 1/0
events which would mean that the event would not be sampled until the
programmer took the time to stop his coding and sample again.

Because the sampling of I/0 devices normally takes several byte
_counts or cycles to accomplish, the frequent insertion of checking
<routines into straight line code results in significant delays to the

entire program. 1In trying to use this technique, there has to be a
tradeof f between the fact that the program wastes a significant
amount of time checking events which have not yet occurred versus
,delaying checking of an event which has occurred and if not timely
serviced the data may be lost.

In order to solve this dichotomy, the concept of interrupt is utilized-
to signal the microprocessor that an external event has occurred and the
microprocessor should devote attention to it immediately. This technique

accomplishes processing in which the microprocessor's program is inter-
rupted and the event that caused the interrupt is serviced.

Transferring most of data and control to I/0 devices in an interrupt
driven environment will usually result in maximum program and/or program-—
mer efficiency. Each event is serviced when it occurs, which means that
there is a minimum amount of delay in servicing events, also a minimum
amount of coding because of elimination of the need to determine occurrence
. of several events simultaneously; each interrupting event is handled

as a unique combination. It 1s possible to interrupt an interrupt

‘?'processing routine and, therefore, all the interrupt logic uses the
stack which allows processing of successive interrupts without any
penalty other tham increasing the stack length.

A real-world example of an event which should interrupt is when
the user is given a panic button indicating to the microcomputer:some
event has occurred that requires total immediate attention of the

microprocessor to solving that problem.




The action and events are as follows: The microprocessor usei
pushes the panic button; the panic switch sensor causes an e:Le:?aChe
device to indicate so the microprocessor an interfupt is dej ;ib;t
microprocessor checks the status of the internal interrupt .Z S
signal; if the internal inhibit is set, then the interrupt 1 g e
However, if it is reset,or when it becomes reset through some prog

action, the followlng set of operations occur:

Example 9.2: Interrupt Sequence

ycle e u a u: X na per ncer eration
( les Address B Data B e 0 ation na P

S t S ter t
C S E 1 ti 1 1 0

Counter,
OP CODE Hold Program
! - Fe o CoDE Feteh Finish Previous
Operation
BRK
h OP CODE Force a
’ v oF copE rere Instruction, Hold
P-Counter
Stack
PCH on Stack Decrement
3 O1FF PCH Store e - O1FE
Stack
PCL on Stack Decrement
¢ OLFE pek seore Pointer to OLFD
Stack
P on Stack Decrement
’ o1 ! seore Pointer to O1FC
k
FFFE New PCL Fetch Vector Low Put Awa{ Stic
] 3 New PCH Fetch Vector High Vector Low
’ Frer © PCL and Set I
PC to
Vector 0P CODE Fetch Interrupt IncieTent
’ PCH PCL Program PC

an be seen 1n Example 9.2, the microprocessor uses the stack to
As ¢ P P

i rrupt vectors
the reentrant or recovery code and then uses the inte p
save

n o} nd FFF ependin whether or not an interrup
FFFE and FFFF FFFA and B) dep nding on
» (or ’

urred.
request or a non-maskable interrupt request had occ

e he inte P s e 1s ne n oma this point
d that t terrupt disable 1 turned on autom tically at h P
not a

by the microproecessor.
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Because the interrupt disable had to be off for an interrupt request
to have been honored, the return from interrupt which loads the processor

status from before the interrupt occured has the effect of clearing the

interrupt disable bit. After the interrupt has been acknowledged by the

microprocessor by transferring to the proper vector location, there are a
variety of operations which the user can perform to service the interrupt;
however, all operations should end with a single instruction which

reinitializes the microprocessor back to the point at which the interrupt

occurred. This instruction is called the RTI instruction.

9.6 RTI — RETURN FROM INTERRUPT

This instruction transfers from the stack into the microprocessor

the processor status and the program counter location for the instruction

which was interrupted. By virtue of the interrupt having stored this data

before executing the instruction, and due to the fact that the RTI reini-
tializes the microprocessor to the same state as when it was interrupted,
the combination of interrupt plus RTI allows truly reentrant coding.

The symbolic notation for RTI is Pt PCt.

The RTI instruction reinitializes all flags to the position to the

point at which they were when the interrupt was taken, and sets the program
counter back to its pre-interrupt state. It affects no other registers
in the microprocessor.

RTI is a single-byte instruction and its addressing mode is Implied.

In the following example, we can see the internal operation of the

RTI which restores the microprocessor:

T TR

e

AT




Example 9.3: Return from Interrupt

Cycles Address Bus Data Bus External Operation Internal Operation
1 0300 RTI Fetch OP CODE Finish Previous
Operation, Increment
PC to 0301
2 0301 ? Fetch Next OP CODE Decode RTIL
3 01FC ? Discarded Stack Increment Stack
Fetch Pointer to O1FD
4 O1FD P Fetch P Register Increment Stack
Pointer to OlFE
5 O1FE PCL Fetch PCL Increment Stack Point-
er to O1FF, Hold PCL
6 OLFF PCH Fetch PCH M+PCL, Store
t Stack Pointer
7 PCH PCL OP CODE Fetch OP CODE Increment New PC

Note the effects of the extra cycle (3) necessary to read data from
stack which causes the RTI to take six cycles. The RTI has restored the
stack, program counter, and status register to the point at which they
were before the interrupt was acknowledged.

There is no automatic saving of any of the other registers in the
microprocessor. Because the interrupt occurred to allow data to be trans-—
ferred using the microprocessor, the programmer must save the various in-
ternal registers at the time the interrupt is taken and restore them prior

to returning from the interrupt. Saving of the registers is best done

on the stack as this allows as many consecutive interrupts as the program-

ming will allow for. Therefore, the routines which save all registers

and restore them are as follows:

Example 9.4: Illustration of Save and Restore for Interrupts

Cycle Bytes

3 1 SAVE PHA Save A

2 1 TXA Save X

3 1 PHA

2 1 TYA Save Y

3 1 PHA
13 5

4 1 RESTORE PLA Restore Y
2 1 TAY

4 1 PLA Restore X
2 1 TAX

4 1 PLA Restore A
16 5
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The SAVE coding assumes that the programmer wants to save and to
restore registers A, X and Y. It should be noted that for many inter-
rupts, the amount of coding that has to be performed in the interrupt is
fairly small.

In this type of operation, it is usually desirable to shorten the
interrupt processing time and not to use all of the registers in the
machine. A more normal interrupt processing routine would consist of
saving only registers A and X, which means that the restore routine would
be to restore only registers X and A. This has the effect of shortening
the interrupt routine by two bytes, and also shortens the restore routine
by two bytes, and will remove 5 cycles from the interrupt routine and 6
cycles from the restore routine.

This technique cumbined with automatic features of the interrupt
and the RTI allows multiple interrupts to occur with successive inter-
rupts interrupting the current interrupt. This is one of the advantages
of the stack -~ as many interrupts can interrupt other interrupts as can
be held in the stack. The stack contains six bytes for every interrupt
if all registers are saved, so 42 sequences of interrupts can be stored
in one page. However, in more practical situations, consecutive inter-
rupts hardly ever get more than about three-deep.

The advantage of permitting an interrupt to interrupt an interrupt

)gyis that the whole concept behind the interrupt is to let asynchronous

events be responded to as rapidly as possible; therefore, it is desirable
to allow the servicing of one interrupt to be interrupted to service the
second, as long as the first interrupt has been properly serviced.

To review how this 1Is accomplished with the normal interrupt
capability of the R6500, it is important that we review the bus concept
which is inherent in the R6500 family and which is compatible with the

As has already been discussed, all 1/0 operations on this type of

microprocessor are accomplished by reading and writing registers which




actually represent connections to physical devices or to physical pins
which connect to physical devices.

Up to this point, this‘discussion has addressed itself to
transferring of data into and out of the microprocessor. However, there
is a concept that is inherent in the bus discipline that says that when-
ever an interrupt device capable of generating an interrupt desires to
accomplish an interrupt, it performs two acts; first, it sets a bit,
usually bit 7, in a register whose primary purpose is to communicate
to the microprocessor the status.of the device. The interrupting device
causes. one of perhaps many output lines to be brought low. These
collector-QRr'd outputs are connected together to the IRQ pin on the
R6500 microprocessor.

The interrupt éequest to the R6500 is the Tia pin being at a
TTL zero. In order to minimize the handshaking necessary to accomplish
an interrupt, all interrupting devices obey a rule that szys that once an
interrupt has been requested by setting the bit and pulling interrupt
low, the interrupt will be held by the device until the condition that
caused the interrupt has been satisfied. This allows several devices

to interrupt simultaneously and also allows the microprocessor to

ignore an interrupt until it is ready to* service it. This ignoring is

done by the interrupt disable bit which can be set by the programmer

and is initialized on by the interrupt sequence or by the start sequence.
Once the interrupt line is low and interrupt disable is off, the

microprocessor takes an interrupt which sets the interrupt disable.

The interrupt disable then keeps the low input line from causing more than

one interrupt until an interrupt has been serviced. There is no other

handshaking between the microprocessor and the interrupting device other

than the collectorOR'd line. This means that the microprocessor must use

the normal addressing registers to determine which of several collector-

UR'd devices caused the line to go low and to process the iInterrupt which s

has been requested.

Once the processor has found the interrupting device by means of
analyzing status bits which indicates which interrupt has been requested,
the microprocessor then clears the status by reading or writing data
as indicated by the status register

It should be noted that a significant difference between status

registers and data registers in I/0 devices is that status registers

; -~ are never cleared by being read, only by being written into -- or by the

microprocessor transferring data from a data register which corresponds
to some status in the status register. Detailed examples of this
interaction are discussed in Chapter 11. The clearing of the status
register also releases the collector-OR'd oytput, thereby releasing the
interrupt pin request.

The basic interaction between the microprocessor and interrupting
device is the interrupting device setting the status bit and brings {its
output IRQ line low. If its output IRQ line is connected to the micro-
processor interrupt request line, the microprocessor waits until the
interrupt disable is cleared, takes the interrupt vector, and sets the
interrupt disable which inhibits further interrupts for the Tﬁa line.

-The m’croprocessor determines which interrupting device is causing an
interrupt and transfers data from that device.

Transferring of data clears the interrupt status and the IRQ pin. At
this point, the programmer could decide that he was ready to accept another
interrupt, even though the data may have been read but not yet operated on.
Mlowing interrupts at this point gives the most efficient operation of
¥.the microprocessor in most applications.

; There are also times when a programmer may be working on some coding

*‘hOSE timing is so important that he cannot afford to allow an interrupt

;fto occur. During these times, he needs to be able to turn on the interrupt
disable. To accomplish this, the microprocessor has a set or clear

interrupt disable capability.

3
)
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9.7 SOFTWARIE POLLING FOR INTEERRUPT CAUSES

As was indicated above, any one of several devices are collector-0OR'd
to cause an IRQ. The effect of any one of the devices or a combination of
them having polled the TRQ line low is always the same. The interrupt
stores the current status of the program counter and processor on the
stack and transfers to a fixed vector address. In servicing the inter-
rupt, it is important to save those registers which will be used in the
analysis of the interrupt and during the interrupt processing, so the
normal first steps of the interrupt routine are to do the SAVE pro-
cedures.

The next operation is to determine which of the various potential
interrupting devices caused the interrupt. To accomplish this, the
programmer should make use of the fact that all interrupting devices
signal the interrupt by a bit in the status register. All currently
implemented 6800 and 6500 peripherals always have interrupt indicators;
either bit 7 or bit 6 in thelir statﬁs register. Therefore, the basic loop
that a user will use to verify the existence of an interrupt on one of

five devices is as follows:

Example 9.5: Interrupt Polling

No.of Bytes Cycles
3 4 LDA Status 1
2 2 BMIL FIRST
3 4 LDA Status 2
2 2 BML SECOND
3 4 LDA Status 3
2 2 BMI THIRD
3 4 LDA Status 4
2 2 BMI FOURTH
3 4 LDA Status 5
2 2 BMI FIFTH
RES1 JMP to RESTORE
FIRST LDA DATA 1
CLI
Process 1
etc.

In this example, the simplest case where the potential interrupts
are indicated by bit 7 being on, has been assumed. This allows taking
advantage of the free N-bit test by following the load of the first
status register with a branch on result minus. If the first device has an
active interrupt request, the BMI will be taken to FIRST where the data is
transferred. This automatically clears the interrupt for the first device.
To allow multiple interrupts, the load A is followed by the CLI instruction
which allows the program to accept another interrupt. As a result of the
CLI, one of two things can occur; there is not another interrupt currently
active, in which case, the microprocessor will continue to process the
first interrupt down to the point where the interrupt is'complete and the
first subroutine does a jump to RESTORE, which is the routine that restores
the registers that were used in the process of servicing the interrupt.
1f another device has an active interrupt which occurred either prior
to the first interrupt or subsequent to it but before the microprocessor
has reached the point where the CLI occurs, then the microprocessor will
immediately interrupt again following the CLI, go back and save registers
as defined before and come back into the polling loop. Therefore, multiple
interrupts are serviced in the order in which they are examined in the polling
sequence. Polling means that the program is asking each device individu-
ally whether or not it is the one that requested an interrupt.

It should be noted that polling has the effect of giving perfect
priority in the sense that no matter which two interrupts occur before the
microprocessor gets to service one, the polling sequence always gives
priority to the highest-priority device first, then the second-highest, then
the third-highest, etc. In light of the fact that this polling sequence requires
no additional hardware to implement other than is available in the inter-

rupting devices themselves, this is the least expensive form of interrupt

. and the one that-should be used whenever possible because of its indepen-

dence from external hardware.




Although it would appear that the last interrupting device in a
sequence pays a significant time penalty based on the amount of instruc~
tions to be executed before the last device is serviced, the amount of
time to perform polls is only six cycles per device and, therefore, '
the extra penalty that the last device has to pay over the first device
is 24 cycles. This is in comparison to a minimum time to cause an inter-
rupt (8 cycles), plus store time for registers (in the range of .
another 8 to 13 cycles) which means that the delay to the last devices
is roughly twice what it would be for the first device.

This timing just described represents a most interesting part of the
analysis of interrupts for a microprocessor. There is a certain '
amount of fixed overhead which must be paid for the interrupt. This over-
head includes the fact that the interrupts can occur only at the end of
an instruction. Therefore, if an interrupt occurs prior to the end of
an instruction, the microprocessor delays until the end of the instruction
to service it. Accordingly, in doing the worst-case analysis, Oﬁe must
consider the fact that the interrupt might be occurring in the middle of
a seven-cycle, read/modify/write instruction which means that the w0fsf-
case time to process the first instruction in an interrupt sequence 1S
14 cycles (7 cycles plus the 7 cycles for the interrupt). '

In light of the fact that saving of additional registers is often
required (at least the accumulator A must be saved), at least twice
the number of cycles will be required. Consequently, the absolute minimum
worst-case time for an interrupt is 17 cycles plus the time to transfer

i st
data which is another 4 cycles. Therefore, interrupt-driven systems mu

¢ described 1is not sufficient to handle the particular problem.

Another consideration is the timing delay when low priority interrupt
has just started to be serviced. The interrupt mask is on, and higher

priority interrupts are blocked from service. 1In this case, the delay

to' the service can easily stretch out to 100 cycles before the interrupt

mask is cleared. This is one of the reasons for clearing up the inter-

rupt mask as soon as data are transferred. (The non-maskable interrupt

which will be discussed later is a solution to this problem.) A second reason

is to use interrupts only for systems that have adequate buffering and/or

slower transfer rates. This does not imply that most microprocessor

applications should not be primarily interrupt-driven. The R6500 inter-
rupt system is designed to be very economical and easy to apply. It should
be used for almost all control applications, other than when the throughput
It should

be remembered that at 1 MHz the R6500 microprocessors are not really capable
of handling problems with more than 50 K bytes throughput for a sustained
period of operation. It is also true that in most control applications,

many of the signals occur at much slower rates or are buffered so that

the allowable response time to a request for service is significantly longer
than the 20 to 50 cycles that can normally be expected with a polling systenm.

Because of this, it is expected that most applications will be quite

satisfied by the polling technique desribed above.

'
‘9.8 FULLY VECTORED INTERRUPTS

However, there are occasions where several high-speed peripherals

i
|
{
{
{

be capable of handling a delay of at least 20 cycles and, more realistically,

can be managed by the microprocessor if the user is willing to make the

i hat
of 20 to 50 cycles before the first interrupt is serviced. This means tha

investment to attain a truly vectored interrupt. A second. level of

devices which are running totally interrupt-driven must not require succ;:' interrupt vectoring is possible by merely putting one high—priofity device
sive bytes of data to be transferred to the microprocessor in less than . on the non-maskable interrupt line. However, in the case when multiple
or 40 cycles and on a given system, only one device is capable of operating A/inputs are desired with both priority encoding and true vectoring, the
at that rate at one time. This limits the interrupt-driven frequency the ?}6500 microprocessors combined with appropriate hardware have the ability in
data transfer to 40 K bytes in a 1-MHz clock system, and 80 K bytes in t the first polling instruction to transfer control to appropriate interrupting

)
device service software.
2-MHz clock system.
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by
roprocessors contain, in two
e ttens o sides the interrupt pro-

of the subroutine in which re
pointer to the address e

cessing for the device which the priority encoder has selected.
i
effective service time of approximately 24 cycles to a prioritize

ty.
s one of the primary applications of the jump indirect capability

d inter-
an

rupt and i

9.8.1 JMP Indirect

This instruction establishes a new value for the program counter.

It affects only the progr
no flags in the status register.

JMP Indirect is a 3-byte instruction.

i the
In the JMP Indirect instruction, the second and third bytes of

str ion represe e lndlrec ow an 11 ytes, resp vely, of the
i t [ e n t r t d g tes, respectil ly,
n uct t 1 d 1 b h b f th

memory lccation containing the effective ADL.

ing ADH.
counter is incremented with the next memory location containing
gram

Example 9.6: Illustration of JMP Indirect
External Internal
Data :
gddress Bis Operation Operation
Cycle us {
ini Previous
g Fetch OP CODE Finish
1 0100 OP CODE e o, :
Increment PC to 010
tis
1AL Interpret Instructil
2 0101 IAL Fetch L t°1q‘
3 0102 IAH Fetch IAH Store IAL
4 IAH, IAL ADL Fetch ADL Add 1 to IAL
’
5 IAIL, LALH1 ADI Feteh AbH Store ADL
h Next
AbL Next OP Fetc '
° Am:’ CODE 0P CODE

tes of memory, an indirut:

am counter in the microprocessor and affects

Once ADL is fetched, the pro- 3

9.9 INTERRUPT SUMMARY

There is an interrupt request line (IRQ) which, when low, indicates
one of the devices which are connected to the interrupt request line
requires service. At the beginning of the interrupt service routine, the
user should save, on the stack, whatever registers will be used in his
interrupt processing routine. His program then goes through a polling
sequence to determine the interrupting device by analyzing the status
registers in the order of priority of service for the I/0 devices. On
€< finding a device which requires service, the data for that device should
’be read or written as soon as possible and the interrupt disable cleared
80 that the microprocessor can again interrupt for servicing lower-priority
devices. Devices with over 40 K bytes transfer, etc., and mixed devices
with over 20 K bytes should not normally be interrupt-driven. All others
may be interrupt-driven as it minimizes the service time and programming
t-;_f(u' 1/0 operations.

9.10 NON-MASKABLE INTERRUPT

As discussed, it is often desirable to have the ability to interrupt
‘an interrupt with a high-priority device which cannot afford to wait during

E the time interrupts are disabled. For this reason, the R6500 microprocessors

have a second interrupt line, called a Non-Maskable Interrupt. The input
characteristics of this line are different than the interrupt request line

(IRQ) which senses it needs service when it remains low. The non-maskable

';1nput i1s an edge-sensitive input -- which means that when the collector-OR'd
input transitions from high to low, the microprocessor sets an internal flag
such that at the beginning of the next instruction, no matter what the

status of the interrupt disable, the microprocessor performs the interrupt

sequence shown in Example 9.2, except that the vector pointer put out in
cycle 6 and 7 is FFFA and FFFB,

This gives two effects of a non-maskable interrupt. First, no

Ratter what the status of the interrupt disable, the non-maskable inter-

fupt will interrupt at the beginning of the next instruction; therefore,

jithe maximum response time to the vector point is 14 cycles. Secondly, the

{nternal logic of the R6500 microprocessors are such that if an interrupt

Fequest and non-maskable interrupt occur simultaneously, or 1if the non-

gMskable interrupt occurs prior to the time that the vectors are selected




the microprocessor always assigns highest priority to the non-maskable inter- §

rupt. Therefore, the FFFA and FFFB vector are always taken if both interrupts

are active at the time the vector is selected. Thus, the non-maskable inter-

rupt is always a higher-priority fast-response line, and can, in any given
system, be used to give priority to the high-speed device.

It is possible to connect multiple devices to the non-maskable inter-
rupt line except for the fact that the non-maskable interrupt is edge-
sensitive. Therefore, the same logic that allows the IRQ to stay low until

the status has been checked and the data transferred will keep the non-

maskable interrupt line in a low state until such time as the first interrupt ;:

is serviced. If, subsequently to the first interrupt of a non-maskable
interrupt line, a second device which is collector OR'd would have
turned on its status and collector-OR'd output, the clearing of the first

{nterrupt request would not cause the line to re-initialize itself to the

high state and the microprocessor would ignore the second interrupt. There- 3

fore, multiple lines connected to the non-maskable interrupt must be carefuk

ly serviced.
In any case, NMI is always a high-priority vectored interrupt.

By virtue of the fact that it goes to a different vector pointer, the

microprocessor programmer can be guaranteed that in 17 cycles he can trans-

fer data from the interrupting device on the non-maskable interrupt input.

The Yia and NMI are lines which, externally to the microprocessor,
control the action to the microprocessor through an interrupt sequence.
As mentioned during the discussion of the start function, the restart
cycle 1s a pseudo-interrupt operation, with a different vector being
selected for reset which has priority over non-maskable interrupt which
in turn has priority over interrupt. There is also a software technique
which permits the user to simulate an interrupt with a microprocessor com~
mand, BRK. It is primarily used for causing the microprocessor to go to a

halt condition or a stop condition during program debugging.

9.11 BRK -- BREAK COMMAND

The break command causes the microprocessor to go through an inter-
rupt sequence under program control. This means that the program counter
of the second byte after the BRK is automatically stored on the stack,
along with the processor status at the beginning of the break instruction.
The microprocessor then transfers control to the interrupt vector.

Symbolic notation for break is PC + 24P} (FFFE)»PCL (FFFF)—PCH.

Other than changing the program counter, the break instruction
changes no values in either the registers or the flags.

The BRK is a single-byte instruction, and its addressing mode is
Implied.

As is indicated, the most typical use for the break instruction is
during program debugging. When the user decides that the particular pro-
gram is not operating correctly, he may decide to patch in the break
instruction over some code that already exists and halt the program when
it gets to that point. In order to minimize the hardware cost of the
break which is applicable only for debugging, the microprocessor makes use
of the interrupt vector pointer to allow the user to trap when a break
has occurred. In order to know whether the vector was fetched in response
to an interrupt or in response to a BRK ins-ruction, the P status is stored
on the stack, at stack poilnter plus !, containing a one in the break bit
(B flag) position, indicating the interrupt was caused by a BRK instruction.
The B bit in the stack contains 0 if it was caused by a normal IRQ. There-

fore, the coding to analyze for this is as follows in Example 9.6.

Example 9.7: Break-Interrupt Processing

Cycles Bytes Check for A BRK Flag
g 1 PLA Lcad status register
; 1 PHA Restore onto Stack
; 2 AND # § 10 TIsolate B Flag
g BNE BRKP Branch to Break Programming

Normal Interrupt Processing




i

This coding can be inserted at any point in the interrupt processing The interrupt vector routine points to:

routine. During debugging, if the user can afford the execution time, it

Patch LDA

should be placed immediately after the save routine. If not, it can be 06
put at the end of the polling routine which gives a priority to the 21
JMP

polling devices as far as servicing the interrupts. However, it should 24
FC

be noted that in order not to lose the break, the returns from all inter-
rupts during debugging should go through an equivalent routine. This coding substitutes:

Once the user has determined that the break is set, a second analysis

LDA 2106
and correction must be made. It does not operate in a normal interrupt for the
manner of holding the program counter pointing at the next location in LDA 2105
memory. Because of this, the value on the stack for the program counter ;ggins o

is at the break instruction plus two. If the break has been patched over
by use
an instruction, this is usually of no significant consequence to the user. y of the BRK and a break processing routine.

However, if it is desired to process the next byte after the break instruc-
, ) . : 9.12 MEMORY MAP
tion, the use of decrement memory instructions in the stack must be used.

It is recommended that the user take care of patching programs with A series of requirements have been discussed to this point for the

breaks by processing a full instruction prior to returning and by then memory organization which can be illustrated by the following memory
m map:

using jump returns. Hex Address

An interesting characteristic about the break instruction is that its - 0000
-00FF RAM used for zero page and indirect memory addressing
operation.
0100-01FF RAM used for stack
processing and £ i
0200-3FFF  Narmeiry mon. g or absolute addressing.
4000-7FFF Normally I/0

8000-FFF9  Program storage normally ROM.

OP CODE is all zeroes (0's); therefore, BRK coding can be used to patch
fusable-link PROMS through a break to an E-ROM routine which inserts patch?
coding.

An cxample of using the break for patching is shown below:

FFFA Vector low address for NMI.
FFFB Vector high address for NMI.
Example 9.8: Patching with a Break Utilizing PROMs FFFC Vector low address for RESET.
FFFD Vector high address for RESET.
FFFE Vector low address for IRQ + BRK.
old Code FC21 LDA FFFF Vector high address for IRQ + BRK.
FC22 05
FC23 21 ' : The addressing schemes for I/0 control between locations 4000 and
FC24 Next OP CODE
ﬂOOO Hex, have not been fully developed. This is described in detail 1in
Patched FC21 BRK 00 Fhe Hardware Manual, Chapter 2. The Zero Page addressing requires that
Code FC22 05
FC23 " RAM should be located starting in location 00. 1If more than one RAM page
FC24 Next OP CODE 48 necessary, RAM location 0100 through O1FF should be reserved for
the stack or at least a portion should be reserved for the stack
with the rest of it being available to the user to use as normal RAM.
Locations from 0200 up to 4000 are normally reserved for RAM expansion.
9-22 9-23




In small memory configurations such as are inherent in a R6530 class de-

vice, in order to minimize the addressing lines, page two (02XX) will be

normally used for input/output as opposed to using the 40XX page which is

used for devices which require significant amounts of RAM, ROM and

1/0.
Because of the fact that the R6500 has three very important vector

points selected in highest order memory, it is usually more useful to
write programs with the memory storage located at a starting address

which allows the programmer to make sure that the last address in his

ROM contains the start and interrupt vectors. Because of these alloca-

tions, the user finds himself working in three directions. RAM is

assigned in location 0000 working up. 1/0 devices are started at

location 4000 starting up and ROM starts at location FFFF and works down.
Although this seems like an unusual concept, one must remember that the

hardware really only gives service to one part of memory at a time and,

therefore, data locations have no priority one over the other. So start-

ing at either end is just as useful a technique as starting at one end B

and working up.
In order to take maximum advantage of the capability of the micro-

processor, particularly when using a symbolic assembler, working data

should be located starting in location 0, and stack addresses should
be reserved until after analysis of the working storage requirements have

been completed. Program storage should start in high order memory with

some guess as to the amount of memory required being taken and that being
taken as a start address. However, care should be taken to assign the

three fixed vectors almost immediately at least symbolically as they are

all necessary for correct operation of the microprocessor.
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CHAPTER 10

SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.0 DEFINITION OF SHIFT AND ROTATE

In ma
ny cases operations of the control systems must operate a bit at

a time.
me. Data are often available only bit-serial, and sometimes sequen-

ti
al bit operations are the only way to solve a particular problem

Also, i or r © combilne into e s and rotate s C -~
so, n de to combi bits into a fi 1d, hift d tat instru

tions are necessary. Multiply and divide routines all require the ability
to move bits relative to one another in a full multiple-byte field.
The shift instruction takes a register such as the accumulator
and moves all of the bits in the accumulator one bit to the right !

or one bi
it to the left. Examples of the shift and rotate instructions

in the R6500 are shown below:

Example 10.1: General Shift and Rotate

.Shift Right Before B7 B6 BS B4 B3 B2 Bl BO

After 0 B7 B6 BS B4 B3 B2 Bl

Shift Left Before B? B6 | BS B4 B3 B2 Bl BO
After EB() B5 | B4 | B3 | B2 Bl | BO 0

Rotate Left Before B7 B6 BS B4 B3 B2 B1 BO

After B6 B5 B4 B3 B2 Bl BO [

Rotate Right Before B7 B6 BS B4 B3 B2 Bl BO

Afterl C B7 B6 BS B4 B3 B2 B1
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As you can see from our example, moving data one bit to the right is 10.2 ASL - ARITHMETIC SHIFT LEFT
called shift right. The natural consequence of the shift right is that
the input bit or high-order bit in this case is set to 0. Moving the data The shift left instruction shifts either the accumulator or the ad-
in the register one bit to the left is called shift left. In this case, the dressed memory location one bit to the left, with bit 0 always being set
0 is inserted in the low-order position. These are the two shift capabilities to 0 and the bit 7 output always being contained in the carry flag. ASL

that exist in the R6500 microprocessor. either shifts the accumulator left one bit or is a read/modify/write instruc-
tion which affects only memory. B7 BO

The symbolic notation for ASL 1is 1 [ Je

It should be noted that in both cases, the bit that is shifted from

the register -- the low-order bit in shift right, and the high-order bit in
shift left ~- is stored in the carry flag. This is to allow the programmer

to test the bit by means of the carry branches that are available, and also
to allow the rotate capability to transfer bits in multiple precision The instruction does not affect the overflow bit, sets N equal to the
result bit 7 (bit 6 in the input), sets Z flag if the result is equal to

shifts.

The rotate right instruction moves the data one bit to the right with the 0, otherwise resets Z and stores the input bit 7 in the carry flag.
value of the carry bit becoming the high order bit of the register and the out- ASL is a read/modify/write instruction and has the following address-
put bit from the shift being stored in carry. The rotate left instruction ing modes: Accumulator; Zero Page; Zero Page, X; Absolute; Absolute,X

’ ’

moves the data one bit to the left with the value of the carry bit becoming the
low-order bit of the register and the output bit from the shift being stored 10.3 ROL -- ROTATE LEFT |

in carcy. . The rotate left instruction shifts either the accumulator or addressed
memory left one bit, with the input carry being stored in bit 0 and with the

input bit 7 being stored in the carry flags.

The symbolic notation for ROL is BT BO
| l‘tl

The ROL instruction either shifts the accumulator left one bit and

10.1 LSR -- LOGICAL SHIFT RIGHT

This instruction shifts either the accumulator or a specified memory

location one bit to the right, with the higher bit of the result always being

set to 0, and the low bit which is shifted out of the field being stored

in the carry flag. B7 BO

The symbolic notation for LSR is ¢] ’{—[ U—b@

stores the carry in accumulator bit 0 or is a read/modify/write instruction

which does not affect the internal registers at afl. The ROL instruction sets
carry equal to the input bit 7, sets N equal to the input bit 6, sets the

The shift right instruction either affects the accumulator by shift- Z flag if the result of the rotate is 0, otherwise it resets Z and does not
ing it right one bit, or is a read/modify/write instruction which changes a affect the overflow flag at all.
specified memory location but does not affect any internal registers. The ROL is a read/modify/write instruction and it has the following address-
shift right does not affect the overflow flag. The N flag is always reset. ing modes: Accumulator; Zero Page; Zero Page, X; Absolute; Absolute, X.

The Z flag is set if the result of the shift is 0 and reset otherwise. The

b carry is set equal to bit 0 of the input.
o LSR is a read/write/modify instruction and has the following address—

ing modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.
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gram counter, and in cycle 3 it fetches the same program counter location and
starts the next instruction operation. At the same time, it is transferring
10.4 ROR -- ROTATE RIGHT

the results from the adder into the accumulator; this 1s because of the look-
The rotate right instruction shifts either the accumulator or addressed ahead and pipelining characteristics of the R6500. The accumulator shift
memory right one bit with bit 0 shifted into the carry and carry shifted into
bit 7.

The symbolic notation for ROR is

and rotate operations require only two cycles and one byte of memory.

. B0 10.6 READ/MODIFY/WRITE INSTRUCTIONS

[

The ROR instruction either shifts the accumulator right one bit and

The R6500 has a series of instructions which allow the user to

change the contents of memory directly with a single instruction. These
stores the carry in accumulator bit 7 or is a read/modify/write instruction 3 instructions include all of the shift, rotate, increment and decrement mem-
which does not affect the internal registers at all. The ROR instruction sets § ory instructions. The operation of each of these instructions is the same
carry equal to input bit 0, sets N equal to the input carry and sets the Z fhgi in that the addressing mode that 1is defined for the instruction is imple-
i{f the result of the rotate is 0; otherwise, it resets Z and does not affect mented the same way as if for normal instructions. After the address has
the overflow flag at all. 4 been calculated, the effective address is used to read the memory location
ROR is a read/modify/write instruction and it has the following address- ' into the microprocessor arithmetic unit (ALU). The ALU performs the opera-
ing modes: Accumulator; Zero Page; Absolute; Zero Page, X; Absolute,X. tion and then the same effective address is used to write the results back
into memory. The most difficult operation is the addressing mode Absolute
10.5 ACCUMULATOR MODE ADDRESSING Indexed which is illustrated in Example 10.3 for the rotate left instruc-

tion, ROL:
As indicated, all of the shift instructions can operate on the accumu-

Example 10.3: Rotate Memory Left Absolute,X

lator. This is a special addressing mode that is unique to the shift in-

structions and operates with the following set of operations: External Internal
Cycles Address Bus Data Bus Operation Operation
Example 10.2: Rotate Accumulator Left
1 100 OP CODE Fetch Finish Previous
External Internal OP CODE Operation, Incre-
Cycles Address Bus Data Bus Operation Operation ment PC to 101
2 101 L -
1 100 OP CODE Fetch Next Finish Previous AD Fetch ADL Decode Current In
struction, Increment
OP CODE Operation; Increment PC to 102
PC to 101
3 10 DH -
2 101 Next Fetch Dis- Decode Current In- 2 A Fetch ADH Qi:tAgé :OXio§ncre
OP CODE carded OP CODE struction; Hold P-
Counter 4 ADH, ADL + X ? False Read Add Carry from
3 101 Next Fetch Next Shift Through the Previous Add to ADH
OP CODE OP CODE Adder 5 ADH + C, Data Fetch Value
ADL + X
4 102 ? Fetch Second Store Results into A;
t Byte Interpret Next OP CODE 6 ADH + C, ? Destroy Perform Rotate,
ADL + X Memory Turn on Write
As we can see, the accumulator instructions have the same effect as 7 ADH + C, Shifted Store Set Flags
the single-byte non-stack instructions, in the sense that the instruction con ADL + X Data Results
tains both the OP CODE and the register in which the operations are going 8 103 OP CODE Fetch Next Increment PC to 104
OP CODE

to be performed; therefore, in cycle 2 the microprocessor holds the pro-
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Cycle 4 is a wasted cycle because read/modify/write instructions should
wait until the carry has been added to the address high in order to avoid
writing a false memory location. This is the same logic that is used in
the store instruction in which the look-ahead or the short-cut addressing
mode is not used. Cycle 4 is an intermediate read, and cycle 5 is when the
actual data that is going to be operated on is read.

The address lines now hold at that address for cycles 5, 6 and 7. The
microprocessor signals both itself and the outside world those operations
during which it will not recognize the ready line. It does this by pulling
the Write line. The Write line is pulled in cycle 6 because data are writ-
ten into the memory location that is going to be written into again in
cycle 7 with correct data.

Because data bits read from memory have to be modified and returned,
there is no pipelining effect other than the overlap of the adding in the
address low and index register. The seven cycles required to perform read/
modify/write Absolute Indexed, X instruction is the worst case in timing
for any section of the machine except for interrupt. This unique ability
to modify memory directly is perhaps best illustrated by the coding in
Example 10.4 which is used to shift a 4-bit BCD number, which has been
accumulated in the high four bits of the accumulator as part of the decoding
operation, from the accumulator into a memory field. Figure 10.1 is a
flow chart of this example. Examples such as this often occur in point-
of-sale terminals and other machines in which BCD data are entered sequen-
tially. This example assumes that the value is keyboard entered, through
which data are entered into the accumulator from left to right but have to
be shifted into memory from right to left. The value in the field before

the shift is a 1729 which after the shift will be a 17,295.

b

Set Y = 4
for counting
number of bits moved

Set X = 4
to move all eight

Y

digits, two digits
at a time

Move one bit from
accumulator into carry

Rotate data once
into next value

Decrement X
to point at next value

No

Yes

Decrement Y

No

Flow Chart for Moving in a New BCD Number
FIGURE 10.1




Example 10.4: Move a New BCD Number into Field

Before After y
A
i
Field 00 00 F
00 01 g
17 72 3
29 95 i
b
Accumulator 50 00 s
Coding :,
Bytes Instruction )
2 LDY 4 ;
2 LOOP 2 LDX 4 Set up for 4 Moves 4
1 ASLA
3 LooP 1 ROL Price -1, X
1 DEX shift the Field 1 Bit i
2 BNE LOoOP 1
1 DEY Shifts Four Times.
2 BNE LOOP 2
14 bytes

i ol

ik

There are several new concepts introduced in this example; the first

is the use of index register Y as just a counter to count the number of

times the character has been bit-shifted. It is a common appreach to use

bit shifts, as is implemented in the R6500 family, to shift data into

memory. The power of being able to communicate directly in memory is shown

by shifting bits from one byte to the next byte using a single ROL indexed

instruction. This example uses a loop within a loop and it should be

1

noted that LOOP 1 occurs four times for every time LOOP 2 occurs. The in-

ternal loop is very important in the sense that this loop executes 16
times for the problem; therefore, its execution time should be optimized.
In addition to having the ability to shift and rotate memory, the

R6500 has the ability to increment and decrement memory locatiomns.
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10.7 INC - INCREMENT MEMORY BY ONE

This instruction adds 1 to the contents of the addressed memory loca-
tion.

The symbolic notation is M + 1 = ﬁ.

The increment memory instruction does not affect any internal registers
and does not affect the carry or overflow flags. If bit 7 is on as the
result of the increment,N 1s set, otherwise it is reset; if the increment
causes the result to become O, the Z flag is set on, otherwise it is reset.

The addressing modes for increment are: Zero Page; Zero Page, X; Abso-

lute; Absolute, X.

10.8 DEC -- DECREMENT MEMORY BY ONE

This instruction subtracts 1, in two's complement, from the contents
of the addressed memory location.

Symbolic notation for this instruction is M - 1 +M.

The decrement instruction does not affect any 1nEernal register in the
microprocessor. It does not affect the carry or overflow flags. 1If bit 7
is on as a result of the decrement, then the N flag is set, otherwise it
is reset. If the result of the decrement is 0, the Z flag is set, other-

wise it is reset.

The addressing modes for decrement are: Zero Page; Zero Page, X;
Absolute; Absolute, X.

In many examples through the report, we have used the ability to incre-
ment and decrement registers in the microprocessors. The advantages of
incrementing and decrementing in memory are that it is possible to kcep
external counters or to directly influencé a bit value by means of these

fnstructions. It is sometimes useful during I/0 instructions.

10.9 GENERAL NOTE ON READ|MODIFY [WRITE INSTRUCTIONS

The ability to read, modify and write memory is unique to R6500
class microprocessors. The usefulness of the instructions is limited only
by the user's approach to organizing memory. Even though the instructions
are fairly long in execution, they are significantly shorter than h:ving
to load and save other registers to perform the same function. I'xperience
in organizing programs to take advantage of this manipulation of muemory

will allow the user to fully appreciate the power of these iInstructions.
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CHAPTER 11
PERIPHERAL PROGRAMMING

11.0 REVIEW OF R6520 FOR 1/0 OPERATIONS

It should be noted that in the following discussions, the major
difference between the R6530 I/0 and the main register of the R6520
1s that the extra bit in the control register need not be used in the
R6530. All registers in the R6530 are directly addressable.

Example 11.1: The R6520 Register Map

M e I Preriteetuity .
A DATA DIRECT-| | B DATA DIRECT-I
ION (AD ' |
* = Base Address : (AD) ' H 10N (BD) [ :
[} '
) PIAD * = % + 1 | W d L e 3
! I PIAC * = % 41 A DATA (AD) B DATA (BD)
P PIBD * = * + 1
PIBC * = * 41
A CONTROL (AC) B CONTROL (BC)
A SIDE B SIDE

; 'i‘ In Example 1l1.1 a programming form to describe the PIA is shown.

; ' [ The programming form is used in the R6500 assemblers. The notation * =

is employed to define any location. The notation means that the assembler
instruction counter is set equal to the value following the equal sign.
The expression * = * + 1 causes the assembler to recognize that there is
one byte of memory associated with the term; therefore, we can see

that the definition of the four registers PIAD, PIAC, PIBD and PIBC

are consecutive memory locations starting at some base address, with

'\
b
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the first byte addressed as PIAD, the second byte addressed as PIAC, the
third byte addressed as PIBD, and the fourth byte as PIBC. This is
a normal way an R6520 would be organized and this is the way the
programming form should be set up. The base address is picked up by
an algorithm described in the hardware manual, but normally it is a
value between 4004 and 4080 Hex. Each R6520 is given a base address
which works progressively up from 4004 Hex.

In Example 11.1 two registers are shown in dotted lines. This is
because each of the A DATA (AD) and B DATA (BD) parts of the R6520
are actually twp registers having the same address, one which specifies
the direction of each of the input/output paths (the Data Direction
Register), the second one which is actually the connection to the in-
put/output paths (the Data Register). Because of pin limitations on
the R6520, the microprocessor can only directly address one of the
‘registers at a time. Differentiation as to which register is being con-
nected to the microprocessor is a function of bit 2 in the respective
control register (AC and BC). If bit 2 is off, the Data Direction Reg-
ister is being addressed; if it is on, the Data Register 1is being ad-

dressed.

During the initialization sequence, therefore, the R6520 starts
out with all registers at zero. This means that the microprocessor is
addressing the Data Direction Register. The PIA initialization is done
by writing the dirpction of the pins into the Data Direction Register
(AD, BD) and then setting on the control flag as described below. Af ter

that, the program will normally be dealing with the data registers.

Example 11.2: General PIA Initialization

LDA # DIRECT
STA PIAD

LDA # CONTR

Initiali Control
STA PIAC " = ?
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Initialize Direction

cause a status bit to be set without causing an interrupt.

Example 11.2 illustrates a general form of initialization and can

be completed for as many PIA's as there are in the system.

11.1 R6520 INTERRUPT CONTROL

The R6520 has a basic interrupt capability which is under control
of the programmer. Almost all R6500 I/0 devices that allow interrupts
have an interrupt control register which permits the user to disable the
interrupt. This will keep inputs that are not necessarily active from
causing spurious interrupts which must be handled by the microprocessor.
Examples of this are open tape loops or other signals which have high-
impedance, nolse-sensitive inputs except when connected to some kind of
media. In this type of application, the interrupt is normally enabled
by some physical action from the person using the device, such as load-
ing of the cassette, pushing the power-on switch, etc. In the case of
the R6520, there are two interrupt causing conditions for each

control register,

Each of these interrubts concerns itself with one input pin.
The Control Register allows the programmer to decide whether or not the
pin is sensitive to positive edge signals or negative edge signals and
whether or not an interrupt shall occur when the selected transition

has occurred.

It should be noted therefore, that it is possible for a line to

The com-
prehensive I1/0 Program in Section 11.5 uses this combination.
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he d
Example 11.3: Interrupt Mode Setup The decision as to whether or not to use the one cycle low until

bit 7 comes on is a hardware decision, depending on the device that

Bit 7 Status Bit: Bits 1 0 Interrupt 3
Set on Negative Edge [ No i is hooked to the pin.
Set on Negative Edge 0 1 Yes B
Set on Positive Edge 1 0 No : ~
Set on Positive Edge 11 Yes ' It should be of interest to the programmer to note that bit 6 con
! trols pins known as CA2 or CB2 which can be considered to be auxiliary
s . it . * X
gﬁ%_g;§§z§§%;%§£édge Bits g 8 In;zrrupt ? v outputs controlled by bit 3, assuming the processor is initialized
Set on Negative Edge 0 1 Yes ! so that bit 5 and bit 4 are ones.
Set on Positive Edge 1 0 No
Set on Positive Edge 1 1 Yes . ]
f Example 11.5 shows the control of bit 3 using AND and OR
*1f Bit 5 Equals Zero i instructions; however, it should be noted that this technique

applies for any individual bit in the PIA data direction register, also.
The proper combination of bits is usually determined during the
design of the R6520 interconnection and forms the constant that is

joaded in the control register; this constant should contain bit 2 Example 11.5: Routine to Change CA2 or CB2 Using Bit 3 Control

on. For example, to allow bit 7 to be set on negative going signals iy

P . Set CA2
with interrupt enable and bit 6 to be set on positive signals with —_—
' b 1 val 1d be Hex 15 : LDA PIAC |
interrupt disable, the control value wou e Hex . ; ORA #508 |
: STA PIAC i
With bit 5 on, the pin that controls bit 6 can be set as an Clear CA2 !
output pin. The output pin is either controllable by the microprocessor ! LDA PIAC
directly or acts as a handshake to reflect the status of reads and - AND #SF7
’ STA PIAC

5 writes of the data register. The operation of the output pins CA2, CB2

: ] . & ] Note: §$ - Direction to Assembler for Hex Notation
depends on how bits 5, 4, and 3 are programmed, as shown in Example 11.4. ﬁ'a . # - Direction to Assembler for Immediate Addressing

| Example 11.4: CA2, CB2 Output Control

A2 Output With: Bit 5 On , . i
C By similar techniques, every pin associated with I/0 registers of the
Bit Bi
t 4 t3 . R6520 can be controlled. There are two particular considerations to remember:

Low on Read or Write until : »

Bit 7 On 0 0 -

¢ 1. 1In the R6520, both bit 6 and bit 7 are cleared on either A or B

Low on read or write for 0 1 . e

one > . side by reading of the corresponding data register if bit 6 has

t )
been set up as an input. This means that polling sequences

Always 0 1 0 for 1/0 instructions should read only the status registers and
Always 1 1 1 b & then read the data registers after the status has been determined;

otherwise, false clearing of the status data may occur.

2. Even though the handshake for the CB2 pin is on write of B

data, a read of B data must be done to clear bit 7.
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11.2 IMPLEMENTATION TRICKS FOR USE OF THE R6520 PERIPHERAL INTERFACE ADAPTERS | 1

11.2.1 Shortcut Polling Sequences

11.2.2 Bit Organization on R6520s

In section 9.7, the techniques for using a LOAD A to poll for

In the microprocessor, there is a definite positional pref- |
interrupts, was.covered; however, the I1/0 devices on the R6520 '

erence for the testing of single bits. In the R6520 Data Direct-
can either set bit 6 or bit 7 to cause an interrupt; therefore,

. ion Register, it is possible to select any combination of input/
a different technique is required to poll a series of 6520's each

output pins by the pattern that is loaded in the Data Direction
one of which could have caused the interrupt. It is for this pur-

Register. A 1 bit corresponds to an output and a 0 bit
pose that the BIT instruction senses both bit 6 and bit 7. Coding

ﬂ'corresponds to an input. The natural tendency would be to use
for a full poll of a PIA is as shown below.

R6520s with all eight bits organized into a byte. There is an
Example 11.6: Polling the R6520

advantage to organizing this way when the eight bits are to be

treated as a single byte by the program. This may not be the

Interrupt Vector JHMP STORE case; more often the bits are a collection of switches, coils,

LDA fiCO Set up Mask for 6 and 7 ;
BIT PIAAC Check for Neither 6 or 7 3 lights, etc.
BEQ NXT1 .
BMI SEVEN If 7, Go to Save-- i With such combinations, advantage should be taken of the fact
Otherwise Clear 1; " that bit 7 is directly testable so that a more useful combination
Process BIT E . of elght pins on one R6520 register would be seven outputs and
6 INTERRUPT E a8 single input with the single input on bit 7. This organization
NXTI BIT PIABC g
BEQ NXTZ .3 allows the programmer to load and branch on that location without
etc. i 3

- ever having to perform a bit or shift instruction to isolate a

particular bit.

A similar capability for setting a single bit involves the

. organization of data with seven inputs and a single output located
This program takes full advantage of the BIT instruction by ¥ T8 P g p

. in bit 0. This bit may be set or cleared by an INC or DEC instruc-

checking for both bit 7 and 6 clear. BMI to SEVEN just checks that

'tion without affecting the rest of the bits in the register because
N is on and is a higher priority. If bit 6 is one, the overflow bit g 3 cau

he input pins ignore signals written from the microprocessor.
will also be set, allowing the finish of the process bit 7 routine P P g & p

"Therefore, the more skilled R6500 programmer will often mix single
to test the overflow and jump back to the process bit 6 coding. Bit 3 prog g

}ioutputs on bit 0 and a single input on bit 7 with bits of the H
6 and bit 7 are sampled by the single BIT instruction. Speed is .

accomplished by loading the mask for just bits 6 and 7 'into the corresponding opposite type.

register which allows the BEQ instruction to determine that neither

of the two flags is on. A
This routine depends on the fact that in the R6520, if CA2

or CB2 1is an outp%t, bit 6 is always zero.

11-6
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11.2.3 Usc of READ/MUDIFY/WRITE Tnstruction For Keyboard Lncoding

The B side is set up to act as a strobe so that each of
A rather unique use of the memory with a read/modify/write the output lines 1s grounded during one scan cycle. The eight
operation involves setting the data register at all zeros, then A side data inputs are then sampled and decoded by the micro-
employing the three state output of the B side to sample a keyboard. processor, glving a 64-key keyboard which is directly trans-
The following Figure 11.1 shows the connection for a 64-key key- latable into code.

board organized 8 x 8: Figure 11.1 and Example 11.7 make use of the capability

of the microprocessor to move a bit throught the R6520 register
{location. This program also utilizes the compare instruction and

- the ability to detect a carry during a shift.

Example 11.7: (Coding for Strobing an 8 x 8 Keyboard

AINAIN AN

Output Strobe is indicated by a one in Data Director Register.

Any connection is indicated by a zero in a register bit.

i
‘\\‘\ ;2: g?ABD Initialize B Data Register
LDA PIABC
AND #FB Initialize Control Register to
B Side BD STA PIABC Address Data Direction Register
STX PIABC
SEC Set low end bit on
LOOP ROL PIABD Shift for Strobe
‘ igi g‘l’xn if All Sampled, Exit
1 - CMP #FF Check for No Zeros
| BEQ LOOP

DONE =~ —---——- If Any Zeros, Then Process Them

A and PIABD can now be used to find out just what key is
depressed.

-f; e te" . v v v ¥ v v ¥

Matrix
AD

A SIDE

Keyboard Encoding Matrix Diagram
FIGURE 11.1




11.3 R6530 PROGRAMMING
Although they have separate addressing, the Data Direction and

Input/Output Registers operate the same as on the R6520.

Programming of the Interval Timer has some special considerations

Sct Data Repister First of all, the time 1s effectively located in all addresses from

To All Zeros Il XXX4-XXXF. By picking the proper address, the programmer is able to
+ ] control the P scale for the timeout. Initialization of the Interval
Set Control Register l“‘s‘“liz" : Timer is done by a LOAD A followed by STORE A into the timing count.
Toluﬂn( At X For The value stored in the timing counter represents the number of states
Data Direction Repister Strobing !
* L~ which the counter will count through. The address used to load will
determine how many additional divisions of the basic clock cycle will

Set Up Dircction Reglster
Equal To All Zc¢ros —-—
And Set Carry

be counted.

When the counter finally counts to zero, it continues to count

past zero at the one-cycle clock rate in order to give the user an

y : opportunity tc sample the Status Register, apd to then "come back"
Shift left 4 and read the Count Register in order to determine how long it has
Strobing Register (B g
3 ¢ ) been since an interrupt occurred.

Servicing an interrupt 1s the same for this Control Register as

for any other interrupting register. Bit 7 is set in the Status

For Done
By Checking if
Shift Ras Moved
Bit Off End of
Register

Register to indicate that the Interval Timer is in the interrupt

Done | Carry state and bit 7 is reset by the reading of the Counter.

On

11.3.1 Reading of the Counter Register

Because of the nature of counting past zero, the number in the Count
Register is in two's complement form. It can be added to directly and can
be used to correct the next count in a sequential string of counts or for

correction for one-cycle accuracy.

Load Keyboard Input Register t 114 HOWTO ORGANIZE TO IMPLEMENT CODING

The specific details of organizing to get coding assembled 1is a

function of the assembler software used.

Yes

Then process Accmulator
for Zero Bits
Keyboard Strobe Sequence
FIGURE 11.2
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The major advantages of employing an assembler are that the
assembler takes mnemonics and labels and calculates the fixed code.
Reference to the OP CODE tables in the appendix shows that coding in
Hex is quite difficult because there is no ordered pattern to the

instruction Hex codes.

An assembler allows one to specify all inputs and outputs
in symbolic form on a documented listing. Symbolic addressing
is a technique which has the following advantages over numerical

addressing:

1. It permits the user to postpone until the last minute actual
memory allocation in a program which is being developed. In
a microprocessor that has memory—ériented features such as
Zero Page, memory management is important. It is desirable
to hav$ as many as possible of the read/write values in the
Zero Page. However, until the coding is complete, the organi-
zation of Zero Page may be in doubt. Values which are
originally assigned in Zero Page may not be as valuable
after some analysis of the coding either indicates that the
applications of these values use indirect references or index-
ing by Y which does not allow the program to really take
advantage of Zero Page locations whereas some other code
which may not be as frequently used might still result in a
code reduction by use of Zero Page. This allocation, if all
the fields are defined symbolically, can be done on the

final assembly without any changing in the user's codes.

2. Use of symbolic addresses for programming braches leads to
a better documented program and calculation of relative

branches is difficult and subject to change any time a

11-12

coding change is made. For example, 1f one has organized
a program with a loop in which three or four branches all
return to the same point and then discovers a programming
error which requires a single instruction to be added
between the return point and various branches, each branch
would have to be edited and recalculated. The symbolic
assembler accomplishes this automatically on the next

assembly.

11.4.1 Label Standards

The R6500 assemblers have been done on a reserve word

basis in which the various mnemonics which have been described

are always considered to be OP CODE mnemonics. If any three
character fields exactly match a mnemonic, then the assembler

assumes that the field is an OP CODE and proceeds to evaluate

the addressing. Any other label may be located in free-form
anywhere in the coding. This means that one should organize labels
in such a manner that a three-character label will not inadvertently
be considered an OP CODE. The easiest way to accomplish this is

always to follow a pattern on labels.

Good programming practice requires that the user develop
a systems flow chart for his own basic program and individual
flow charts for subroutines before starting the coding. From
the time the routine is flow-charted, it is very easy for the

user to then assign a mnemonic label to the basic subroutine.

In this text, notations like LOOP, LOOP 1, etc. are used.
In an ADD, loop would be ADLP.

The R6500 assembler allows six characters for labels. It is good
practice to use two characters to generally identify the subroutine, two
more characters for mnemonic purposes, and then a numbering system which
allows correlation between various addresses within a subroutine. By
strictly numbering so that ADLPl is different from ADLP3, each can be
addressed within the same LOOP.
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Table #1 P1A 11

With six~character labels, there are a huudred com-
PIA #1 ADL
binations of code which could be utilized in a given routine or DATA
loop without the user having to think through the rest of
——
mnemonic notation. The use of characters plus a numeric for L7 ADH STATUS
all references is sound programming practice. The advantage
of this technique is that it permits one to employ three-character
mnemonics without ever interfering with the reserved word of
the microprocessor OP CODE mnemonics, because they never have a i g Table #2 List
numeric in the mnemonic. .
x L ADL
; Value 1
11.5 COMPREHENSIVE 1/0 PROGRAM » — Value 2
E ADH Value 3
Figure 11.3 demonstrates the program flow in support of the Cross-— im etc.

Assembler listing (Example 11.9) of a time-sharing routine of a program
that illustrates the use of the indexed indirect to perform a search of
eight devices which have active signals for servicing. The implementa~-
tion of the eight devices is accomplished in R6520's, where the R6520

status 1s set up to be a flag in bit 7 of a Control Register.

It is assumed that the PIA's are connected in the normal manner

of Status Register Address equal to Data Register Address + 1.

The following table and flow chart defines the program implemented

in the example.

r Table #1 contains the address of all »f the R620 Status Registers.

C Table #2 contains the address of the put-away location for the

respective data.
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v

¥

Initialize Index to End of Table

Fetch Next Status Register

Yes Status
On
Decremenl X by 2
No

Decrement Table 1 as Indexed
to point at Data Register

Y

Fetch Data using
Table 1, Indexed

Y

Store Data using
Table 2, Indexed

Y

Increment Table 2 Pointer
to point at Next Address

Y

Increment Table 1 to point
back at Status

v

Program Flow -- Polling for Active Signal
FIGURE 11.3
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Example 11.8: Polling for Active Signal !

£
%

o0e canp |
CARD SERFAL NUMBER i
AN SYSTEMS BENCHMARX =3 - POLLING 8§ PERIFHERALS

-

MEMORY LOCATION i

3
’ SET TABLES AND STOMAGE AREAS

10 COMMENT

11 (0000) =502 i
12 506 03 &0 TABLEL .WORD PIALAC i
13 DOO4 07 & LWORD PIAIBC

14 0008 09 40 (WORD PIAIAC

13 0008 OB 40 VORD P1A26C :
18 000A 11 a0 WORD PIAIAC ;
17 0ooC 1) s0 LWORD PIADSC i
18 00Ot 21 40 SWORD PLAAAC

i9 0010 21 40 .VORD PIALRC ;
20 0012 00 02 TABLEZ .WORD STOREL POINTERS TO STORK INPUT DATA FROM PERIPHERALS

21 0014 30 02 .WURD STORZ?

22 0018 Au 02

SEY SPACE FOM DATA INPUT O PAGE 2
FOR EACK DEVICE SET AUTFZR B0 CRARA(TERS LOW.

“0 MALN PROGRAN PROGRAM LCCATION
1)
8 oo

(?i0r1) e INITIALIZE INDEX REGISTER X WITH 16
LO LDA (TABLEL-2,X) INDIRECT ADDAESSING OF PERIPHERAL CONTROL
0 VALuE Bl DOIT 1F FLAG SET BRANCH AND SERVICE TWE DEVICE
ca I, IF 0T SEARCH NEXT OWK
ca

50 Fa ADORESS  ane(FLorD) MNEMONG
o re seq FL5 START AGALN TO POLL FROM THE SECTMWING
SYMBOLIC ADDRESS

SERVICE ROUTINE

53 reoc e 00 DOIT  DEC TABLEL-2,X MOYE THZ POINTER TO PIA DATA REGISTER
34 reor Al DO LDA (TABLEL-2,X) READ DATA TN

33 rc10 a0 STA {TABLE2-1,0) STOREL TNZ DATA 1NTO THE SUFYER

3% rciz " 10 INC TABLEZ-2,X SET WPFER POINTER TO WEXT LOCATION
37 rcis 7% 00 1NC TABLEL-2,X

3 rcis 00 1 1

WHER DONE START FROM RECTNNING AGAIN

61 ASSICN FIA LOCATION

FIRST PERIPRERAL

Secom

™o

rounmi

rirmy

strm

SEvENTH

st a012

E1CHTR
83 40D

€D OF PROGRAX
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APPENDIX A

INSTRUCTION LIST,

ALPHABETIC BY MNEMONIC,

DEFINITION OF

INSTRUCTION GROUPS

= g
o 3
.}

A
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= g A.1 INTRODUCTION
‘- T o E
g = 8% [s}
) g e 53 @ The microprocessor instruction set is divided into three basic groups.
i -] K 2 E £
9 =
CE « E £z H The first group has the greatest addressin flexibility and consists of
g c 3 33 v g g y
IR = O <}
'i?. § (8 o < 5 = x>X 555 the most general-purpose instructions such as Load, Add, Store, etc.
b d N c > 5 ] x x X & €=
: 'E' g ; ,'.g 3 ﬁg 3% E 3 §§ § é E"é The second group includes the Read, Modify, Write instructions such as
£ > > x S S € g a €€k
5; 2 E E g g 82 & E Eg o < ég z g gg?8 §§ § Shift, Increment, Decrement and the Register X movement instructions. The
£ s g ©#oegr 2.6 ¢ o R 4
8 32 % 2 53 5 s ¢£9 3 £ 2 £ g g g2 g § - third group contains all of the remaining instructions, including all stack
8 i g sa83v & «2f 0 - w3 5 ST 0 e oae s
§‘ £%% 2 2 2453 - g8 & 3 g 5ees g8 . X ):: operations, the register Y, compares for X and Y, and instructions which do
5 < C 5580 Fo—=9 EZ=. 2x> A pu e s
H :Elf i? § g § ¢ g % g; g g 2w E gE - 3(3 l‘,u‘; BEY not fit naturally into Group One or Group Two.
Z 388 5 8 83 sE LpitE8D oL Lo oe
] E 22 é" § = §£§ § ?g cc - g 2 g < £ E < % gg g %.g There are eight Group One instructions, eight Group Two instructions,
£ L N @ < [ SO0 E e o
a o ceg® @855 & gee @
¥RE z 55 8955 Sy5yy88c SS5SgS
5 ESS(% g2 0 ;:',‘é'a;-m; éé’;é 3’0‘%(%(7”7’5) e eSS and 39 Group Three instructions.
% > ¢ L 0n & The three groups are obtained by organizing the OP CODE pattern to
o < qa e _w» 00— <X xXs9
E, §§§§ g g nI. E ;g gg; E g wuw (l‘,-) "u-)E 'S :_t "Q ’>5 ﬁt give maximum addressing flexibility (16 addressing combinations) to Group

One, and to give eight combinations to Group Two instructions; the Group

Three instructions are basically individually decoded.

A.2 GROUP ONE INSTRUCTIONS

R6500 MICROPROCESSOR INSTRUCTION SET — ALPHABETIC SEQUENCE

- g g Group One instructions are: Add With Carry (ADC), And (AND), Compare

5 :E, g 5 § (CMP), Exclusive Or (EOR), Load A (LDA), Or (ORA), Subtract With Carry (SBC),

ggg —g §>< N E and Store A (STA). Each of these instructions has a potential for 16 address—

g E g <8 R . %éé 2o g 2w ing modes. However, in the R6502 through R6507 and R6512 through R6515,

EE g £y k] g = ‘g‘ < 515, 222 z 222 g only eight of the available modes have been used.

§'§'§ g:};"g‘ ;é §§ :;“:;: §'§§‘§ s § g: : £ g:: 'é Addressing modes for Group One are: Immediate, Zero Page, Zero Page

v é g‘g g g% § % % % Eg g §§n %% E g g é 32 jg Z SE é’ f:’ 'é Indexed by X, Absolute, Absolute Indexed by X, Absolute Indexed by Y,

'g é g (g g mg g E ‘g ccg § og (g g% g g i i § g ?, f«.:" g E § E % Indexed Indirect, Indirect Indexed. The unused eight addressing modes are

sh 3 § .é § 3 J-é fé § g -§-§ ‘zzig § § é g 5 ?E! 7: E, S S é to be used in future versions of the R6500 product family to allow

§ fz( ;, % cg g é g cg tg |.:.5 5 g 8 8 3 5 8838 g g g ¢ g £E 3 addressing of additional on-chip registers, of on-chip I/0 ports, and to
allow two-byte word processing.

837 §88-58532 233385% 8EE § gxE g e e prosessine




A.3 GROUP TWO INSTRUCTIONS

Group Two instructions are primarily read, modify, write instructions.‘
There are really two subcategories within the Group Two instructionms.
The components of the first group are shift and rotate instructions and
are:
Right (ROR).

The second subgroup includes the Increment (INC) and Decrement (DEC)

shift Right (LSR), Shift Left (ASL), Rotate Left (ROL), and Rotate

instructions and the two index register X instructions, Load X (LDX) and
Store X (STX). These instructions would normally have eight addressing
modes available to them because of the bit pattern. However, to allow
for upward expansion, only the following addressing modes have been de-
fined: Zero Page, Zero Page Indexed by X, Absolute, Absolute Indexed
by X, and a special Accumulator (or Register) mode. The four shift in-
structions all have register A operations; the incremented or decremented
Load X and Store X instructions also have accumulator modes, although the
Increment and Decrement Accumulator has been reserved for other purposes.
Load X from A has been assigned its own mnemonic, TAX. Also included in
this group are the special functions of Decrement X which is one of the
special cases of Store X. 1Included also in this group of the X decodes
are the TXS and TSX instructions.

All Group One instructions have all addressing modes available to
each instruction. 1In the case of Group Two instructions, another address-;
ing mode has been added -- that of the accumulator, and the other special;;
decodes have also been implemented in this basic group. However, the
primary function of Group Two instructions is to perform some memory
operation using the appropriate index. .-

It should be noted for documentation purposes that the X instruction;f

have a special mode of addressing in which regigter Y is used for all in- {B

X instructions have Absolute Indexed by Y.

A.4 GROUP THREE INSTRUCTIONS

There are really two major classifications of Group Three in-
structions: the modify Y register instructions, Load Y (LDY), Store Y
(STY), Compare Y (CPY), and Compare X (CPX), instructions actually
occupy about half of the OP CODE space for the Group Three instructions.
Increment X (INX) and Increment Y (INY) are special subsets of the Compare X
and Compare Y instructions, and all of the branch instructions are in the
Group Three instructions.

Instructions in this group consist of all of the branches:

BEQ, BMI, BNE, BPL, BVC and BVS.

BCC, BCS,
All of the flag operations are also de-
voted to one addressing mode; they are: CLC, SEC, CLD, SED, CLI, SEI and
CLV. All of the push and pull instructions and stack operation instructions
are Group Three instructions. These include:

PLP.

BRK, JSR, PHA, PHP, PLA and
The JMP and BIT instructions are also included in this group. There
is no common addressing mode available to members of this group. Load Y,

Store Y, BIT, Compare X and Compare Y have Zero Page and Absolute, and all

of the Y and X instructions allow Zero Page Indexed operations and Immediate.
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ADC Add memory to accumulator with carry ADC
& Operation: A+ M+ C » A, C NZCIDV
(Ref: 2.2.1) -
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
The following notation applies to this summary:
Immediate ADC # Oper 69 2 2
A Accumulator Zero Page ADC Oper 65 2 3
X, ¥ Index Reglsters ] Zero Page, X ADC Oper, X 75 2 4
M Memory 'i\: Absolute ADC Oper 6D 3 4
P Processor Status Register '3 4 Absolute, X ADC oper, X 7D 3 4n
§ Stack Pointer Absolute, Y ADC Oper, Y 79 3 4%
’ Change [ (Indirect, X) ADC (Oper, X) 61 2 6
- No Change b | (Indirect), Y ADC (Oper), Y 71 2 5#
+ Add E 3
A Logical AND I * Add 1 if page boundary 1s crossed.
- Subtract ,
¥ Logical Exclusive Or -
4 Transfer from Stack ,
+ Transfer to Stack ’
> Transfer to AND “AND’ memory with accumulator AND
Transfer to ‘bgical AND to the accumulator
Logical OR Operation: AA M > A NZCIDV
. PC Program Counter 5 (Ref: 2.2.4.1) Y Y - — -

, ’ PCH Program Counter High

2 PCL Program Counter Low Ad:gZZSi“S Assemblioiznguage ngE Biiés Cyiiés

B OPER Operand

# Immediate Addressing Mode Immediate AD  # Oper 29 2 5
Zero Page AND Oper 25 2 3

' Note: Shown in parentheses at the top of each table a Zero Page, X AND oper, X 2 , .

i reference number (Ref: XX) which directs the user to ] Absoluce AND oper . ; .

\ the particular Section in the R6500 Microcomputer absolute, X AND oper, X . 3 an
Family Programming Manual in which the instruction sbsolute, Y AND oper, ¥ 39 ; on
is defined and discussed.

h (Indirect, X) AND (Oper, X) 21 2 6
- (Indirect), Y AND (Oper), Y 31 2 5* .

* Add 1 1f page boundary 1is crossed.

:
i
3
1
v

B-2 B-3




ASL

Operation:

ASL Shift Left One Bit (Memory or Accumulator)

¢« [1fs]s[«[3[2[1]¢] -

ASL

BCC

Operation:

NZCI1IDV
IA A ==
(Ref: 10.2)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Accumulator ASL A [ 1 2
Zero Page ASL Oper @6 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper @E 3 6
Absolute, X ASL Oper, X 1E 3 7
BCC Branch on Carry Clear Bcc t
Branch on C = ¢ NZCIDV
(Ref: 4.1,2.3)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BCC Oper 9¢ 2 2%

* Add 1 1if branch occurs

to same page.

* Add 2 if branch occurs to different page.

BCS

Operation:

BCS Branch on carry set

BCS

 BEQ

Branch on C = 1 NZ2CIDV
(Ref: 4.1.2.4) ST
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BCS Oper B¢ 2 2%
* Add 1 if branch occurs to same page.
* Add 2 1if branch occurs to next page.
BEQ Branch on result zero BEQ
Operation: Branch on 3 = 1 NdCIDV
(Ref: 4.,1.2.5) = —=—=——~
Addressing Assembly Language oP No No.
Mode Form CODE Bytes Cycles
Relative BEQ Oper F9 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

h




T B"’ . BNE BNE Branch on result not zero BNE
BI BIT Test bits in memory with accumulator ‘¥
i« Operation: Branch on Z = 0 NZCIDV
Operation: AAM, M_ > N, M >V y
7 -
Bit 6 and 7 are transferred to the status register. NZCIDV ' (Ref: 4.1.2.6)
If the result of AAM is zero then Z = 1, otherwise M7/ —— = M() 3 Addressing Assembly Language op No. No.
2=9 ) Mode Form CODE Bytes Cycles
(Ref: 4.2.2.1) ]
Addressing Assembly Language op No. No. ) Relative BNE Oper D¢ 2 2%
Mode Form CODE Bytes Cycles
* Add 1 1if branch occurs to same page.
Zero Page BIT Oper 24 2 3 * Add 2 if branch occurs to different page.
Absolute BIT Oper 2C 3 4

BPl BPL Branch on result plus BP'.

Operation: Branch on N = ¢ NZ2CIDV

BMI BMI Branch on result minus BMI

Operation: Branch on N = 1 N3CIDV

(Ref: 4.1,2.2)

(Ref: 4.1.2.1)

Addressing Assembly Language opP No. No. Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles Mode Form CODE Bytes Cycles
Relative BMI Oper 39 2 2% Relative BPL Oper 1¢ 2 2%

* Add 1 if branch occurs to same page. * Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page. * Add 2 if branch occurs to different page.
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BVC

Opera

BRK Force Break

Operation: Forced Interrupt PC + 2 + P + NZ2CIDV
—_—— - 1 —_——
(Ref: 9.11)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes | Cycles
Implied BRK [1['] 1 7
1. A BRK command cannot be masked by setting I.
BVC Branch on overflow clear Bvc
tion: Branch on V =0 N2CIDV
(Ref: 4.1.2.8) 7
Addressing Assembly Language opP No. No.
Mode Form CODE [ Bytes Cycles
Relative BVC Oper 5@ 2 2%

* Add 1 1f branch occurs to same page.

* Add 2 if branch occurs to different page.

BVS

Operation: Branch on V = 1

(ic

BVS Branch on overflow set

BYS

NZCIDV
(Ref: 4.1.2.7)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BVS Oper 7¢ 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
CLC Clear carry flag CLC
Operation: @ +~ C NZ2CIDV
(Ref: 3.0.2) 8-
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cycles
Implied CLC 18 1 2




CLb

CLD Clear decimal mode

CMP

Operation: ¢ + D NZCIDV
_— = — ¢ —
(Ref: 3.3.2)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied CLD D8 1 2
CLI CLI Clear interrupt disable bit CLI
Operation: ¢ ~ I NZ2CIDUV
(Ref: 3.2.2) el
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
( Implied CLI 58 1 2
B-10

Operation: ¢ + V

CLV Clear overflow flag

(Ref: 3.6.1)

NZCIDV

cLv

Addressing Assembly Language oP No. No
Mode Form CODE Bytes Cycles
Implied CLV B8 1 2
CMP Compare memory and accumulator CMP
Operation: A - M NZCIDV
/A - - -
(Ref: 4.2.1)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Immediate CMP #Oper c9 2 2
Zero Page CMP Oper Cc5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper CD 3 4
Absolute, X CMP  Oper, X DD 3 4%
Absolute, Y CMP Oper, Y D9 3 4%
(Indirect, X) CMP (Oper, X) Ccl 2 6
(Indirect), Y CMP (Oper), Y D1 2 S*

* Add 1 if page boundary is crossed.

T TATTT

L E——
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DEC DEC Decrement memory by one DEC

CPX ¢ CPX 45
; CPX Compare Memory and Index X | Operation: M - 1 + M N3a3CIDV
b
Operation: X - M NZ2CIDV o A - ———
WAV (Ref: 10.8)
(Ref: 7.8) 3
] Addressing Assembly Language op No. No.
Addressing Assembly Language oP No. No. i Mode Form CODE | Bytes Cycles
Mode Form CODE | Bytes | Cycles
; Zero Page DEC Oper cé 2 5
Immediate CPX #Oper E@ 2 2 o | Zero Page, X DEC Oper, X D6 2 6
Zero Page CPX Oper E4 2 3 | Absolute DEC Oper CE 3 6
Absolute CPX Oper EC 3 4 R Absolute, X DEC Oper, X DE 3 7

CPY CPY E i DEx DEX Decrement index X by one DEx

CPY Compare memory and index Y

Operation: X - 1 + X N3 CIDV
Operation: Y - M NZCLDV i
S = — — ) (Ref: 7.6) =
(Ref: 7.9) '
Add i A bly L op N N ! Addressing Assembly Language oP No. No.
ressing ssembly Language o. o. Mode Form CODE B
Mode Form CODE Bytes Cycles ytes Cycles
Implied
Immediate CPY #O0per co 2 2 apLie DEX ca 1 2
Zero Page CPY Oper C4 2 3
: Absolute CPY Oper cc 3 4




DEY DEY Decrement index Y by one DEY IN( INC Increment memory by one lNc
Operation: Y - 1 + Y NZCIDV Operation: M + 1 + M NZCIDV
VAV R /o
(Ref: 7.7) (Ref: 10.7)
Addressing Assembly Language oP No. No. Addressing Assembly Language opP No. No.
Mode Form CODE | Bytes | Cycles Mode Form CODE | Bytes | Cycles !
Implied DEY 88 1 2 Zero Page INC Oper E6 2 5
. Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
b
EOR EOR “Exclusive—Or" memory with accumulator EOR : INx INX Increment Index X by one INX
Operation: A ¥ M > A NZCIDV b Operation: X + 1 = X N3CIDV
N ; S - ==
(Ref: 2.2.4.3) (Ref: 7.4)
Addressing Assembly Language OP No. No. Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles Mode Form CODE Bytes Cycles
Immediate EOR #Oper 49 2 2 ! Implied INX E8 1 2
Zero Page EOR Oper 45 2 3 5
Zero Page, X EOR Oper, X 55 2 4 !
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4%
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect),Y EOR (Oper), Y 51 2 5% 1
* Add 1 if page boundary is crossed. g
:
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,’SR JSR Jump to new location saving return address jSR

|NY INY Increment Index Y by one |NY Operation: PC + 2 +, (PC + 1) + PCL NZ3CIDYV
Operation: Y + 1 » Y N3aCIDV (PC+2)>PCH e ——
JS - — (Ref: 8.1)
(Ref: 7.5)
Addressing Assembly Language oP No. No.
Addressing Assembly Language op No. No. Mode Form CODE | Bytes | Cycles
Mode Form CODE Bytes Cycles
Absolute JSR Oper 20 3 6
Implied INY c8 1 2
r : lDA LDA Load accumulator with memory lDA
jMP IMP Jump to new location jMP | Operation: M + A N2CIDV
/S - — —
Operation: (PC + 1) +~ PCL s CIDV E (Ref: 2.1.1)
: .0.2 3
I - -,-
i : Addressing Assembly Language oP No. No.
B Mode Form CODE | Bytes Cycles
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
R Immediate LDA # Oper A9 2 2
Absolute JMP Oper 4C 3 3 Zero Page LDA Oper AS 2 3
Indirect JMP  (Oper) 6C 3 5 Zero Page, X LDA Oper, X BS 2 4 .
Absolute LDA Oper AD 3 4 s
Absolute, X LDA Oper, X BD 3 4x §
Absolute, Y LDA Oper, Y B9 3 4 f
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y Bl 2 5%
* Add 1 if page boundary is crossed.
B-16 B~17




LDX

LDX Load index X with memory

LSR

LSR Shift right one bit (memory or accumulator)

Operation: M - X NZCIDV Gperation: @ — nl - NZCIDUV
(Ref: 7.0) I —m - 0/ / ———
(Ref: 10.1)
Ad:rzssing Assembl;oiinguage CgIP;E Bth):zs C I2(1)(35 ' Addressing Assembly Language oP No. No.
ode y y Mode Form CODE | Bytes | Cycles
Immediate LDX # Oper Az 2 2 Accumulator LSR A 4A 1 2
Z P D A 2
ero Fage LDX  Oper 6 3 Zero Page LSR Oper 46 2 5
A P Y LDX 0O Y B6 2 4
ero rage, per, Zero Page, X LSR Oper, X 56 2 6
Absolut LDX O AE 3 4
S? ute per Absolute LSR Oper 4E 3 6
Absolute, Y LDX Oper, Y BE 3 4%
Absolute, X LSR Oper, X SE 3 7
* Add 1 when page boundary is crossed.
3 LDY LDY Load index Y with memory 9 NOP NOP No operation NOP
: A Operation: No Operation (2 cycles) N3BCIDV
: Operation: M » Y NZ2CIDV i 2%
S — -
i (Ref: 7.1) ‘ Addressing Assembly Language op No. No.
. Mode Form CODE Bytes Cycles
Addressing Assembly Language
Mode Form
Implied NOP EA 1 2
Immediate LDY #Oper
Zero Page LDY Oper
Zero Page, X LDY Oper, X
Absolute LDY Oper
Absolute, X LDY Oper, X
* Add 1 when page boundary is crossed.
B-18 B-19
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v"l PHP PHP Push processor status on stack PHP
ORA ORA “OR’ memory with accumulator ORA Operation: P+ NZCIDUV
Operation: A VM -+ A N3CIDV ’ (Ref: 8.11) = —————-—
SA —
(Ref: 2.2.4.2)
¥ ! Addressing Assembly Language oP No. No.
Addressing Assembly Language oP No. No. ; Mode Form CODE | Bytes | Cycles
Mode Form CODE Bytes Cycles ;
Implied PHP g8 1 3
Immediate ORA #Oper 99 2 2
Zero Page ORA Oper @5 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper #D 3 4
Absolute, X ORA Oper, X 1D 3 4%
Absolute, Y ORA Oper, Y 19 3 4% K
(Indirect, X) ORA (Oper, X) ¢1 2 6
(Indirect), Y ORA (Oper), Y 11 2 5*
* Add 1 on page crossing
PLA Pull accumulator from stack Pu
PHA 3 Operation: A ¢ NZCIDV
PHA PHA Push accumulator on stack - S —-— -
Operation: A ¥ N2 CIDV L (Ref: 8.6)
‘ (Ref: 8.5) 7 ¥ ] Addressing Assembly Language op No. No.
| Mode Form CODE Bytes Cycles
, Addressing Assembly Language OP No. No. f\
?; Mcde Form CODE Bytes Cycles : : Implied PLA 68 1 4
Implied PHA 48 1 3
B-20 B-21




PLP

Operation: P ¢

PLP Pull processor status from stack

NZCIDV

From Stack

B

(Ref: 8.12)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied PLP 28 1 4
]
ROL ROL Rotate one bit left (memory or accumulator) ROl
Mor A
Operation: ﬂﬂ « [C] + NZCIDV
S A A - ==
(Ref: 10.3)
Addressing Assembly Language OP No No.
Mode Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

ROR  Rocate one bit right (memory or accumulator)

ROR

L M or A
Operation: */7*17]615'4]3[2[1[GJ—/| NZCIDV
- (Ref: 10.4) A -
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page,X ROR Oper,X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute,X ROR Oper,X 7E 3 7
RT' RTI Return from interrupt RTI
Operation: P+ PCt NZ2CIDV

From Stack

(Ref: 9.6)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied RTI 44 1 6
RTS RTS Return from subroutine RTS
Operation: PC+, PC + 1 PC NZ2CLDYV
(Ref: 8.2) T T 77
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
(!
‘ Implied RTS 60 1 6




sm SED Set decimal mode SED

SB( SBC Subtract memory from accumulator with borrow SBC Operation: 1 + D NZCIDV
Operation: A - M~ C + A NZCIDUV e =
Note: C = Borrow (Ref: 2.2.2) S A A == (Ref: 3.3.1)
Addressing Assembly Language opP No. No.
Addressing Assembly Language oP No. No. : Mode Form CODE Bytes Cycles
Mode Form CODE Bytes Cycles
Implied SED F8 1 2
Immediate SBC #Oper E9 2 2
Zero Page SBC Oper ES 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4%
Absolute, Y SBC Oper, Y F9 3 4% y
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y Fl 2 5%
L3
* Add 1 when page boundary is crossed. &
SH SEI Set interrupt disable status
SE( SEC Set carry flag SEC B P SE'
- tion: + 1
Operation: 1 » C NZCIDUV 4 ‘0pera on: 1 NZCIDV
(Ref: 3.0.1) S b (Ref: 3.2.1) T TT
Addressing Assembly Language OP No. No. K ! Ad;;:zsing Assembli Language ngE BNO. No.
Mode Form CODE | Bytes | Cycles |- orm ytes | Cycles
Implied SEC 18 1 5 ..M ; Implied SEI 78 1 2
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AR

t
§
H
s
Y
4
1

STA

Operation:

STA Store accumulator in memory

STA .;; Y

STX

Operatjon: X + M

A+ M NZ2CIDYV
(Ref: 2.1.2) 7
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Ofer, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6
STX Store index X in memory S'I'x
NZ2CIDYV
(Ref: 7.2)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8E 3 4
B-26

fperation:

STY Store index Y in memory

STY

TAX

Operation:

Y+ M NZ2CIDV
(Ref: 7.3)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8c 3 4
TAX Transfer accumulator to index X TAx
A=+ X N3aCIDV
VA
(Ref: 7.11)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied TAX AA 1 2
B-27




: ‘.:3'*.7

TAY

TAY Transfer accumulator to index Y

TAY 15X

TSX Transfer stack pointer to index X

Operation: A + Y NZCIDV P Operation: S » X N3CIDV
A et (Ref: 8.9 I
(Ref: 7.13) )
Addressing Assembly Language oP No. No. Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes Cycles Mode Form CODE Bytes | Cycles
Implied TAY A8 1 2 Implied TSX BA 1 2
3 TXA TXA Transfer index X tu accumulator TXA
Operation: X > A N3CIDV
(Ref: 7.12) e
t
p Addressing Assembly Language oP No. No.
F Mode Form CODE | Bytes | Cycles
4 Implied TXA 8A 1 2
TYA TYA Transfer index Y to accumulator TYA :
Operation: Y -~ A NZ2CIDV !
VA — e 4
(Ref: 7.14) S
.
Addressing Assembly Language OoP No. No. B 3 o .
Mode Form CODE | Bytes | Cycles ,‘ sz TXS Transfer index X to stack pointer sz
%f { Operation: X > S NZCIDV
Implied TYA 98 1 2 S (Ref: 8.8) = —————-—
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied TXS 9A 1 2
B-28 \ . B-29
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APPENDIX D

OPERATION CODE INSTRUCTION LISTING,
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1"}
g1
92
93
P4
85
96
97
@8
99
PA
¢B
#c
oD
$E
#F
19
11
12
13
14
15
16
17
18
19
1A
1B
ic
1D
1E
1F

BRK

ORA - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page
ASL - Zero Page
Future Expansion
PHP

ORA - Immedi;te
ASL - Accumulator
Future Expansion
Future Expansion
ORA -~ Absolute
ASL - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page,X
ASL - Zero Page,X
Future Expansion
CLC

ORA - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA - Absolute,X
ASL - Absolute,X

Future Expansion

20
21
22
23
24
25
26
27
28
29
ZA
2B
2C
2D
2E
2F
39
31
32
33
34
35
36
37
38
39
3A
3B
3c
3D
3E
3F

JSR

AND - (Indirect,X)
Future Expansion
Future Expansion
BIT - Zero Page
AND ~ Zero Page
ROL - Zero Page
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT ~ Absolute
AND - Absolute
ROL - Absolute
Future Expansion
BM1

AND - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND - Zero Page,X
ROL - Zero Page,X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND -~ Absolute,X
ROL - Absolute,X

Future Expansion

49
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
59
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

RTI

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR ~ Zero Page
Future Expansion
PHA

EOR - Immediate
LSR - Accumulator
Future Expansion
JMP - Absolute
EOR - Absolute
LSR - Absolute
Future Expansion
BVC

EOR - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EQOR - Zero Page,X
LSR ~ Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR - Absolute,X

Future Expansion

b-3

6¢
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
79
71
72
73
74
75
76
77
78
79
7A
7B
ic
]
7E
7F

RTS

ADC - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Immediate
ROR - Accumulator
Future Expansion
JMP - Indirect
ADC -~ Absolute
ROR - Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page,X
ROR - Zero Page,X
Future Expansion
SEI

ADC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute,X

Future Expansion



8¢ - Future Expansion
81 - STA - (Indirect,X)
82 - Future Expansion
83 - Future Expansion
84 - STY - Zero Page
85 - STA - Zero Page
86 ~ STX - Zero Page
87 - Future Expansion
88 - DEY

89 - Future Expansion
8A - TXA

8B — Future Expansion
8C - STY - Absolute
8D - STA - Absolute
8E - STX - Absolute
8F - Future Expansion

99 - BCC

91 - STA - (Indirect),Y

92 - Future Expansion

93 - Future Expansion

94 - STY - Zero Page,X
95 - STA - Zero Page,X
96 - STX - Zero Page,Y
97 - Future Expansion

98 - TYA

99 — STA - Absolute,Y

9A - TXS

9B - Future Expansion

9C - Future Expansion
9D - STA - Absolute,X
9E - Future Expansion

9F - Future Expansion

A@ - LDY - Immediate
Al - LDA - (Indirect,X)
A2 - LDX - Immediate
A3 - Future Expansion
A4 - LDY - Zero Page
A5 - LDA - Zero Page
A6 - LDX - Zero Page
A7 - Future Expansion
A8 - TAY

A9 - LDA - Immediate
AA - TAX

AB - Future Expansion
AC - LDY - Absolute
AD - LDA - Absolute
AE - LDX - Absolute
AF - Future Expansion

B@# - BCS

Bl - LDA - (Indirect),Y

B2 - Future Expansion

B3 - Future Expansion

B4 - LDY - Zero Page,X
BS - LDA - Zero Page,X
B6 - LDX - Zero Page,Y
B7 - Future Expansion

B8 - CLV

B9 - LDA - Absolute,Y

BA - TSX

BB - Future Expansion
BC - LDY - Absolute,X
BD - LDA - Absolute,X
BE - LDX - Absolute,Y

BF - Future Expansion

C# - CPY - Immediate

Cl - CMP - (Indirect,X)

C2 - Future Expansion
C3 - Future Expansion
C4 - CPY - Zero Page
C5 - CMP -~ Zero Page
C6 - DEC - Zero Page
C7 - Future Expansion
C8 ~ INY

C9 -~ CMP - Immediate
CA - DEX

CB - Future Expansion
CC - CPY - Absolute
Ch - CMP - Absolute
CE - DEC - Absolute
CF - Future Expansion
D@ - BNE

DI - CMP - (Indirect),Y

D2 - Future Expansion

D3 -~ Future Expansion

D4 - Future Expansion

D5 - CMP - Zero Page,X
D6 - DEC - Zero Page,X
D7 - Future Expansion

D8 - CLD

D9 - CMP - Absolute,Y

DA - Future Expansion

DB ~ Future Expansion

DC - Future Expansion

DD - CMP - Absolute,X

DE - DEC - Absolute,X

DF - Future Expansion

E§ - CPX - Immediate

El - SBC - (Indirect,X)

E2 - Future Expansion
E3 - Future Expansion
E4 - CPX - Zero Page
E5 - SBC - Zero Page
E6 ~ INC - Zero Page
E7 ~ Future Expansion
E8 ~ INX

E9 - SBC - Immediate
EA - NOP

EB ~ Future Expansion
EC - CPX - Absolute
ED - SBC - Absolute
EE - INC ~ Absolute
EF - Future Expansion
F@ - BEQ

Fl1 - SBC - (Indirect),Y

F2 - Future Expansion

F3 - Future Expansion

F4 - Future Expansion

F5 - SBC - Zero Page,X
F6 - INC - Zero Page,X
F7 - Future Expansion

F8 - SED

F3 - SBC - Absolute,Y

FA - Future Expansion

FB ~ Future Expansion

FC - Future Expansion

FD - SBC - Absolute,X

FE ~ INC -~ Absolute,X

FF - Future Expansion
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Appendix E is intended to serve the user by serving as a reference
for the R6500 addressing modes. Each mode of address is shown
with a symbolic illustration of the bus status at each cycle

during the instruction fetch and execution. The example number

E.3 ABSOLUTE ADDRESSING

Example 5.5: Illustration of Absolute Addressing

as found in the text is provided for reference purposes.

E.1 IMPLIED ADDRESSING

Example 5.3: Illustration of Implied Addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
i PC PC + 1 OP CODE Fetch OP CODE
2 PC + 1 PC + 1 New Ignore New
OP CODE OP CODE;
Decode 0O1d
OP CODE
3 PC + 1 PC + 2 New Fetch New
OP CODE OP CODE;
Execute 0Old
OP CODE
E 2 IMMEDIATE ADDRESSING
Example 5.4: Illustration of Immediate Addressing
Clock .
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC + 1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 Data Fetch Data,
Decode OP CODE
3 PC + 2 PC + 3 New Fetch New
OP CODE OP CODE,
Execute 0Old
OP CODE

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC + 1 QP CODE Fetch OP CODE
2 PC +1 PC + 2 ADL Fetch ADL,
Decode OP CODE
3 PC + 2 PC + 3 ADH Fetch ADH,
Retail ADL
4 ADH, ADL PC + 3 Data Fetch Data
5 PC + 3 PC + 4 New Fetch New
OP CODE OP CODE,
Execute 0ld
. OP CODE
@v
E.4 ZERO PAGE ADDRESSING
Example 5.6: Illustration of Zero Page Addressing
i% Clock
ﬁ Cycle Address Bus Program Counter Data Bus Comments
13
f 1 PC PC + 1 OP CODE Fetch OP CODE
% 2 PC +1 PC + 2 ADL Fetch ADL, De-
5 code OP CODE
y 3 00, ADL PC + 2 Data Fetch Data
;f 4 PC + 2 PC + 3 New Fetch New
i OP CODE OP CODE, Exe-
‘é cute Old
“ OP CODE



¥
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: E.5 RELATIVE ADDRESSING (BRANCH POSITIVE, NO CROSSING OF PAGE BOUNDARIES)
B Example 5.8: Illustration of Relative Addressing -- Branch Positive E.7 ZERO PAGE INDEXED ADDRESSING
i Take; No Crossing of Page Boundaries
i External Internal
H Cycle Address Bus Data Bus Operation Operation Example 6.8: 1Illustration of Zero Page Indexing
‘ 1 0100 OP CODE Fetch Finish Previous Oper- Address Data External Internal
f OP CODE ation, Increment Pro- Cycle Bus Bus Operation Operation
; gram Counter to 101
R Finish P 1
R: 2 0101 +50 Fetch Interpret Instruction, 1 0100 OP CODE Fetch OP CODE onls revious
. peration
- Offset Increment Program
E; Counter to 102 2 0101 BAL Fetch Base Interpret Instruct-
" 3 0102 Next Fetch Next Check Flags, Add Rela- Address Low ion
i OP CODE OP CODE tive to PCL, Increment j (BAL)
, Program Counter to 103 3 00, BAL Data Fetch Add: BAL + X
4 0152 Next Fetch Next Transfer Results to ; (Dis- Discarded
£ OP CODE OP CODE PCL, Increment Program carded Data
i Counter to 153
; Data
E.6 ABSOLUTE INDEXED ADDRESSING (WITH PAGE CROSSING) ; 4 02;(3“‘ Data Fetch Da
Step 5 is deleted and the data in step 4 are valid when no page crossing occurs. b
5 0102 Next OP Fetch Next OP Finish Operation
S ! CODE CODE
i Example 6.7: Absolute Indexed; With Page Crossing E 4
Address Data External Internal ‘
Cycle Bus Bus Operation Operation
1 0100 OF CODE Fetch OP CODE Finish Previous
Operation Increment
PC to 101
2 0101 BAL Fetch BAL Interpret Instruction
Increment PC to 102
3 0102 BAH Fetch BAH Add BAL + Index
Increment PC to 103
4 BAH, BAL Data Fetch Data Add BAH + Carry 3
+X (Ignore) . (Data is 1
ignored) 1
5 BAH+1, Data Fetch Data
BAL+X
'
6 0103 Next OP Fetch Next Finish Operation
CODE OP CODE
E-4 1 E-5




E.9 INDIRECT INDEXED ADDRESSING (WITH PAGE CROSSING)

£.8 INDEXED INDIRECT ADDRESSING Step 6 is deleted and the data in step 5 are valid when no page crossing occurs.

Example 6.12: Indirect Indexed Addressing (With Page Crossing)

‘ Example 6.10: 1Illustration of Indexed Indirect Addressing

; Add pat Ext L . 1 Address Data External Internal
' ress Data xterna nterna Cycle Bus Bus Operation Operation
: Cycle  Bus Bus Operation Operation - = —beratoon —peratien
: 1 0100 OP CODE Load OP CODE Finish Previous
:‘ 1 0100 OP CODE Fetch OP CODE Finish Previous Oge:ation
" Operation
K
! In-
: 2 0101 BAL Fetch BAL Interpret In- 2 0101 IaL Fetch IAL I:Ei:z::;n !
. struction
‘ 3 00,BAL DATA (Dis- Fetch Discard- Add BAL + X 3 00,1AL  BAL Fetch BAL Add 1 to IAL
carded d DATA
L ed) € 1 4 00,1AL BAH Fetch BAH Add BAL to Y
4 00,BAL ADL Fetch ADL Add 1 to BAL + X +1
+ X
5 BAH, BAL DATA (Dis- Fetch DATA Add 1 to BAH
5 00,BAL Fetch ADH Hold ADL g +Y carded) (Discarded)
+X+1 k
b 6 BAH + 1 DATA Fetch Data
& BAL + Y
6 ADH,ADL DATA Fetch DATA i
’ b 7 0102  Next OP Fetch Next OP Finish This
7 0102 Next OP Fetch Next OP Finish Operation CODE CODE Operation
CODE
E-6
-~ he 4 " "y
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The R6500 System's family of microprocessors have a special form of
addressing known as "Indirect". The basic operation of Indirect addres-
sing is described in the main body of this manual. It is the intent
of Appendix.H to acquaint the user with some of the uses and applications
of Indirect addressing.

The Indirect address is really an address which would have been coded
in-line as in the case of Absolute, except for the fact that the address
is not known at the time the user writes the program. As has been indic-
ated several times in the body of this manual, it is significantly more
efficient with the organization of the R6500 to assign addresses and
implement them if the addressing structure is known; however, this is not
always possible to accomplish. For instance, in order to minimize the
coding of a subroutine or general-purpose set of coding, it is often
desirable to work with a range of addressing that is impossible to cover
in a normal index, or, in the case of subroutine, where it is necessary
for the addresses to be variable depending on which part of the whole
program called the address.

It is probably this discussion which best amplifies the need for
calculated addresses. It should be fairly obvious to the vwser that a
general-purpose subroutine cannot contain the address of the operations,
Therefore, instead of having the instruction LDA followed by the value
that the programmer wants to load, in a subroutine it may be desirable to

perform a Load A from a calculated or specified address.

The use of the Indirect Addressing Mode is to give the user a loca- 'y

tion in Page Zero in which can be put the calculated address. Then the
subroutine instruction can call this calculated address, using the form

Load A from an address pointed to by the next byte in program sequence.

The word "indirect" technically comes from the fact that instead of taking §

the address which is immediately following the instruction, the next value |
in program sequence is a pointer to the address.

The Indirect pointer will be referred to from now on as IAL, because
it is a Zero Page address and, therefore, is a low-order byte. The in-

direct instructions are written in the form "Load A" followed by IAL.

IAL points to an address which had been previously stored into Page Zero.
This gives the user the flexibility of addressing anywhere in memory with
a calculated address. However, the real value of Indirect is not simply
in having Indirect, but in having the ability to have Indirect modified.
This is the reason for which indirect indexed instruction is implemented
rather than straight indirect. An example of the indirect indexed in
subroutining is covered in Section 6.5, but it should be noted that the
indirect indexed instruction should be employed whenever the user does
not know the exact address at time of compilation. Although there may

be other interesting and esoteric uses of the indirect index instruction,
this is the most common one.

The second form of indirect is very powerful for certain types of
applications. Chapter 11 shows the use of tables which have pointers,
and the advantage of running down one table of pointers until a match
is found and then using the same index to address a second table to
perform an operation. This is the classical stack processor type of
architecture but it requires a special discipline at the time a program
is originally defined. Both the indirects require a concept of memory
management that is not obvious to the novice programmer.

The concept of indexed indirect is that memory has to be viewed as
a series of tables, in which access to one set of tables is accomplished
by indexing through a 1ist of pointers. One set of tables might be
searched to perform some type of testing or operation; then the same
index is employed to process another set of pointers. This concept is
only applicable to operations in which a variety of inputs are being
serviced. A classical application is when several remote devices are being
managed by the same control program. An example might be having three
teletypes tied on to a device; each teletype is being manually controlled
and can be under control of the user program. In this type of message-
handling environment, the control program for the teletypes does nothing

more than collect strings of data from the input device and then perform

operations on the string upon seeing a control signal, usually a carriage

s s

55 ot o




return in this case of the teletype. Because any one of the teletypes can
be causing any one of the series of operations, this program does not lend
jtself well to the concept of absolute addressing. In fact, most of the
subroutines which deal with the individual processing should be written
address-independent. This normally allows the addition of more devices
without paying any penalty in terms of programming. Therefore, this is a
subroutine or nonabsolute type of operation in which the indirect indexed
would not apply, because each of the various operations use a function of
position. In other words, one can assign a series of tables that point

at the teletype itself, another set that points at an outgolng message
stream, and another set that points to a series of tables which keep the
status of the device. Each of these pointers is considered to be an
jndividual address at the beginning of a string. Each string has a
variable length. The teletype strings may consist of a three-character
message followed by a carriage return, or a 40-character message

followed by a carriage return. In the R6500, this system is implemented
by developing a series of indirect pointers. Each teletype has an
indirect pointer. Its I/O port has another indirect pointer that points
at the put-away string, another one that points at the teletype message
output string, another one that points at its status table. If all of the
teletypes work in this manner, it can be seen that the coding to put data
into the input message table is the same for all the teletypes and is
totally independent of the teletype in which data is being stored.

The index register X serves as a control for the tables so that if
all tables were sequentially organized, X would point at the proper value
for each operation. A sample operation might be: read teletype three,
transfer the data to teletype three input register, update teletype three
counter, check to see that teletype three is still active, and decide
whether or not to return to signal teletype three back. The coding to
perform each of these operations would be exactly the same as coding for
teletype two, if the tables were organized in such a way that X was an

index register for the pointers.

i
This is the type of string manipulation application for which indexed
indirect was designed, and only when a program can be organized for this

technique is the indirect used to 1its maximum potential. The advantages

for organizing for this type of approach when the problem requires string
manipulation is significant: the comprehensive I/0 program is roughly
one-half the memory and one-fourth the execution time of several other

microprocessors which do not have this indexed indirect feature
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The number 1789 1s assumed by most people to mean one thousand, seven

hundred and eighty-nine,or 1 x 103+ 7x102 +8x 10! +9x 100. However,

until the number base 1s defined, it might mean
1x163+7 x162+8x 161 + 9 x 160

which is hexadecimal and the form that is used in the microprocessor,

In order to distinguish between numbers on different bases, mathema-
ticians usually write 178910 or just 1789 for base 10, or decimal, and
178916 for base 16 for hexadecimal. Because very few computers or I1/0 de-
vices allow subscripting, all hexadecimal numbers are preceded by a "$"
notation; thus, '"1789" indictes base 10 and "$1789" indicates base 16.

Why hexadecimal? This 1is a convenient way of representing 8 bits in
2 digits.

The R6500 is a byte-oriented microprocessor which means most opera-
tions have 8~bit operations. There are 2 ways to look at 8 bits. The
first is as 8 individual bits in which 00001000 means that bit 3 (bit 7 to
0 representation) is on and all other bits are off, or as an 8-bit binary
number in which case the value is

ox2 +0x2° S5cox2%+1x22+0x22+0x2t+0x2%=8

or $08.

+ 0 x 2

t
For logic analysis purposes each bit is unique, but for arithmetic

purposes the 8 bits are treated as a binary number,

Binary Arithmetic Rules:

0+0=0

0+1=1

1+0=1

1+ 1 =20 with a carry

Carry occurs when the resulting number is too long for the base. 1In
decimal, 8 + 4 = 2 + 10, 1In hexadecimal, $8 + $4 = $C (see hexadecimal
details), so that 8 + 4 has a carry in base 10 but not in base 16.

Using these rules to add 8 + 2 in binary gives the following:

00001000 8 b1 x 28

00000010  +2 1 x 2!
00001010 10 1x23+1x2!

Therefore, any number from 0 - 255 may be represented in 8 bits, and
binary addition performed using the basic binary add equation,
Rj - (Aj v Bj ¥ Cj—l)’ where, as defined previously, ¥ is notation for

Exclusive-Or.

In most applications, it is also necessary to subtract. Subtract
operations require either a different hardware implementation or a new way
of representing numbers.

A combination of this is to implement a simple inverter in each bit.
This would make

00001100 12

11110011 -~12

However, when subtracting 12 from 12, the result should also be 0.

00001100  +12
11110011  -12
11111111 0

However, 1f a carry is added to the complemented number:

1 Carry
00001100 12
11110011 -12
00000000 = O

If, instead of representing -12 as the complement of 12, it is represented

as the complement plus carry, the following is obtained:




11110011 = 12

1 = Carry
11110100 = -12
00001100  +12

00000000 0

This representation is called two's complement and represents the way that
negative numbers are kept in the microcomputer. Below are examples of

negative.numbers represented in two's complement form.

-§ = 00000000
-1 = 11111111
-2 = 11111110
-3 = 11111101
-4 = 11111100
-5 = 11111011
-6 = 11111010
-7 = 11111001
~8 = 11111000
-9 = 11110111

Hexadecimal is the representation of numbers to the base 16. The fol-

lowing table shows the advantages of Hex:

Hexadecimal Binary Decimal
0 0000 00
1 0001 01
2 0010 02
3 0C11 03
4 0100 04
5 0101 05
6 0110 06
7 0111 07
8 1000 08
9 1001 09
A 1010 10
B 1011 11

' C 1100 12
D 1101 13
E 1110 14
F 1111 15

H-4
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Because 16 is a multiple of 2, hexadecimal is a convenient shorthand

for representation of 4 binary digits or bits. The rules on arithmetic

also hold.
Binary Hex
0100 1111 4F
+ 0110 0010 + 62
1011 0001 Bl

To take advantage of this shorthand, all addresses in this manual are

shown in hexadecimal notation. It should be noted that the reader should

learn to operate in Hex as soon as possible. Continual translation back
to decimal {s both time-consuming and error-prone. Working in Hex and

binary will quickly force learning of hexadecimal manipulation and the famil-

iarity with working with this convenient representation.

Although many microcomputer applications can successfully be accom-
plished with binary operations, some applications are best performed in
decimal. Although the use of one decimal character per byte would be a
legitimate way to solve this problem, this is an inefficient use of the cap-
ability of the 8-bit byte.

The microprocessor allows the use of BCD representation. This
representation i{s, in 4-bit form:

= 0000
= 0001
= 0010
= 0011
0100
= 0101
= 0110
= 0111
= 1000
= 1001

O WL Ny W - O
L}

In BCD, the number 79 is represented:

Binary BCD  Hex
01111001 = 79 = 79




The microprocessor automatically takes this into account and corrects Example H.4.2: Backward Reference, No Page Crossing
4,28 s

for the fact that

O15A  BNE

Decimal BCD Hex 015E _s55
79 = 01111001 79 = 01111001
+12 = 00010010 12 = 00010010 015¢ Next OF CODE
91 = 10010001 8B = 10001011

To calculate if br h is take
The only difference between Hex and BCD representation is that the anc s

microprocessor automatically adjusts for the fact that BCD does not allow Offset -55 = AB = 10101011

+ Address Low for

Next OP CODE +5C = 5C = 01011100
7

67 07 00000111

for Hex values A - F during add and subtract operations.
0

The carry is expected because of the negative offset and is ignored,

The offset which follows a branch instruction is in signed two's thus giving 0107 as the result.
complement form which means that
$+50 = +80 01010000 Example H.4.3: Backward Reference If Page Boundary Crossed

and $-50 = -80 10110000 .
Proof = 00000000 : 0105 BNE

0106 -55
i E d
The sign for this operation is in bit 7 where an 0 equals positive an . 0107 Next OP CODE
a 1 equals negative. o
This bit is correct for the two's complement representation but also ] To calculate if branch is taken, first calculate a low byte
flags the microprocessor whether to carry or borrow from the address high i} Offset ) 55 = AB = 10101011
byte. -4 Address Low for

Next OP CODE 07 = 00000111

¢ The following four examples represent th binati f offset hich & pAAAA LT
e fo g p p e combinations of offsets which 32 = 16110010

07 -
B2 =

might occur (all notations are in hexadecimal):

There 1is no carry from a negative offset; therefore, a carry must be

Example H.4.1: Forward Reference, No Page Crossing made:

0105 BNE -1 = -1 = FF = 11111111
0106 +55 + Address High = 01 = 0l = 00000001
0107 Next OP CODE 0 00 00000000

This gives 00 B2 as a result.

To calculate next instruction if the branch is taken

;‘ Offset +55 01010101 Example H.4.4: Forward Reference Across Page Boundary
1 Address Low
%. for Next 00BO BNE
’ OP CODE 07 00000111 00B1 +55
5C 01011100
0082 Next OP CODE

with no carry, giving 015C as the result.
; To calculate next instruction if branch is taken,

Revised 2/79
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55 = 01010101
B2 = 10110010
07 00000111
+1 1 = 00000001
Address High 00 = 00000000
1 = 00000001
H-8

Address Low
for Next
OP CODE

o
[
]
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et

=]

with carry on positive number.

which gives 0107.




